A substrate for electronic components is formed by bonding a cooling metal layer to one side of a ceramic tile and bonding an electronic metal layer to the other side of the electronic tile. The substrate is secured to a machining base and the cooling metal layer surface is enhanced through an MDT process. In the process, fins are sliced into the cooling metal layer with a tool to a depth of less than the cooling metal layer thickness. The slicing forces material upward without removing material from the cooling metal layer, forming fins that extend beyond the original thickness of the cooling metal layer. The fins can be cross-sliced at an angle to form pins.
Technologies for modular cooling systems for cooling electronic components installed in equipment racks are provided herein. A modular cooling system comprises a cold plate and a support manifold connected to the cold plate. Together, the support manifold and cold plate define a fluid path for cooling fluid from the support manifold to the cold plate. The modular cooling system also includes an equipment carrier including equipment cooled by the cold plate.
A system for cooling a CPU. The system has a tank for holding dielectric coolant in a liquid phase. The CPU is immersed in the coolant. A cover closes the tank. Electric pathways that convey data to/from the CPU traverse the cover. The electric pathways allow the CPU to exchange data with an external device. In this fashion, the CPU can perform data processing functions while being immersed in dielectric coolant.
A retractable display configured as a plurality of interlinked display subassemblies or panels, a transport box having a lid configured to enclose the display system, the box or subassemblies having a rack system configured to support the plurality of linked display subassemblies in the transport box, a lift mechanism configured to assemble and disassemble the plurality of releasably interlinked display subassemblies into a seamless display, and an alignment system configured to align one display subassembly with a neighboring display subassembly and thus, functions as a rugged self-contained transport box of a plurality of interlinked display subassemblies capable of automated assembly into a seamless display larger than its transport box.
A dielectric header sub-assembly includes a header body with opposed first and second surfaces and a side wall. The first and second surfaces define a header axis extending therebetween. The side wall extends from the first surface to the second surface. The second surface includes a tapered portion. A dielectric header sub-assembly includes a bore. The bore extends from the first surface to the second surface. A first bore opening of the bore proximate to the first surface is greater in area than a second bore opening of the bore proximate the second surface. A method of assembling a header sub-assembly includes inserting an electrical connector into a bore of a header body, applying an active braze filler material into the bore and applying heat to braze the active braze filler material to the header body and the electrical connector.
A data processing equipment structure includes a plurality of sidewalls and a ceiling panel, which, together, define an enclosed space. The structure further includes at least one equipment enclosure and at least one cooling unit arranged in side-to-side relationship in a row within the enclosed space. At least one separation panel divides the enclosed space into a front plenum at a front side of the row and a rear plenum at a rear side of the row. Cool air in the front plenum is isolated from heated exhaust air in the rear plenum.
Disclosed is a module type safety bus bar including: a vertical coupling portion (20) which is a vertically-extending rectangular parallelepiped insulating block, has an upper end provided with a first combining means, and a middle portion into which a bus bar (30) penetrates to be combined with the vertical coupling portion in the form of a cross, the bus bar (30) connecting terminals of a distributor (A) to a circuit breaker (B); and a horizontal coupling portion (10) which is a horizontally-extending rectangular parallelepiped insulating block and has a second combining means, to be combined with the first combining means, in a middle portion of a lower end thereof. The horizontal coupling portion (10) covers an exposed metallic portion of the bus bar after the terminals of the distributor and circuit breaker are connected to each other so that the bus bar (30) becomes safe.
A transparent conductive electrode comprising metal nanowires and method of making is described, wherein the transparent conductive electrode has a pencil hardness more than 1H, nanoporous surface having pore sizes less than 25 nm and surface roughness less than 50 nm. The transparent conductive electrode further comprises an index matching layer, having a refractive index between 1.1-1.5 and a thickness between 100-200 nm.
The present invention aims to provide a backdrilling method and a backdrilling apparatus that can ensure the backdrilling depth accuracy. Using a multilayer printed wiring board in which a reference depth detection region is allocated where a reference depth detection layer is formed in the same layer with an internal wiring layer electrically connected to a stub, the thickness and the depth of the reference depth detection layer are measured in the reference depth detection region using a drill bit. The drill bit is moved relative to the multilayer printed wiring board to a backdrilling portion. The drilling is performed using the drill bit to the depth which is calculated using the ratio of the depth of the reference depth detection layer to the thickness of the multilayer printed wiring board in the reference depth detection region.
A substrate with a built-in capacitor includes an insulating base material layer, a build-up layer formed on the insulating base material layer and including a conductor layer and an insulating layer, and a multilayer ceramic capacitor positioned in an opening of the base material layer and including internal electrodes, ceramic dielectric layers and a pair of external electrodes. The ceramic capacitor has a cuboid shape having long sides and short sides, the pair of external electrodes is formed on opposing long-side sides such that the external electrodes are separated by a distance in range of 30 μm to 200 μm and that each external electrode includes a conductive paste layer connected to a respective group of the internal electrodes and a copper plated layer covering the conductive paste layer, and the conductive paste layer includes Ni paste or Cu paste including glass component in range of 5% to 40%.
There is provided a method of manufacturing a wiring board, including the steps of: preparing an insulating layer 1a including a cavity formation region X, and a separable metallic foil M formed of first and second metallic foils M1 and M2; allowing the separable metallic foil M to adhere to at least a lower face side of the insulating layer 1a with the first metallic foil M1 serving as an adhering surface; forming a cavity 2 by digging the insulating layer 1a and the separable metallic foil M in a cavity formation region X from an upper surface side of the insulating layer 1a to a depth that does not penetrate the second metallic foil M2; inserting an electronic component D into the cavity 2, and fixing the electronic component D by a fixing resin J; and peeling off the second metallic foil M2.
A flexible electronic device includes a first flexible substrate, a first electronic component, a second flexible substrate, a second electronic component and an adhesive layer disposed between the first flexible substrate and the second flexible substrate. The first electronic component is disposed on a first surface of the first flexible substrate. The second electronic component is disposed on a first surface of the second flexible substrate. The first surface of the first flexible substrate has a first FPC bonding area having an orthogonal projection projected on a plane where the second flexible substrate is located does not overlap the second flexible substrate. The first surface of the second flexible substrate has a second FPC bonding area having an orthogonal projection projected on a plane where the first flexible substrate is located does not overlap the first flexible substrate.
A printed wiring board includes a first insulating layer having concave portions on first surface of the first insulating layer, a first conductor layer including first circuits formed in the concave portions, a second conductor layer including second circuits on second surface of the first insulating layer, a first via conductor connecting the first and second conductor layers, and a second insulating layer formed on the second surface of the first insulating layer and covering the second conductor layer. Each first circuit has upper, lower and side surfaces such that the upper surface is exposed from the first insulating layer and the side and lower surfaces are not roughened surfaces, each second circuit has top, back and side surfaces such that the side and back surfaces are roughened surfaces, and a thinnest first circuit has a line width L1 smaller than a line width L2 of a thinnest second circuit.
An wiring board of the present invention includes an insulating board, a pair of signal external connection pads, a pair of ground external connection pads, a pair of signal through-hole conductors, a pair of around through-hole conductors, a core ground conductor layer having an opening, a via-hole conductor, a strip-shaped wiring conductor, an upper-side signal connection conductor, and a lower-side signal connection conductor, in which the pair of the ground through-hole conductors is arranged across the opening from each other.
Systems and approaches are provided for optimizing the Spanning Tree Protocol (STP) in a switched network. STP port type for a network infrastructure device can be controlled based on the dynamically discovered neighbor device type of the directly connected peer of the device using the Link Level Discovery Protocol (LLDP). LLDP can provide system capabilities of a link level peer to identify whether the link level peer is a host or a network infrastructure device. In various embodiments, the exchange of system capabilities can the trigger the configuration of an STP port as a network port for ports connected to network infrastructure devices or edge ports for ports directly connected to host devices.
A circuit may be configured to reduce electrical signal degradation. The circuit may include a first trace and a second trace that may be broadside coupled between a first ground plane and a second ground plane. The first and second traces may be configured to carry first and second signals, respectively, of a differential signal. The circuit may also include a first dielectric material disposed between the first trace and the second trace. Further, the circuit may include a second dielectric material disposed between the first trace and the first ground plane and disposed between the second trace and the second ground plane. A difference between a first dielectric constant of the first dielectric material and a second dielectric constant of the second dielectric material may suppress a mode conversion of the differential signal from a differential mode to a common mode.
In a plasma ion source having an induction coil adjacent to a reactor chamber for inductively coupling power into the plasma from a radio frequency power source and designed for negative and positive ion extraction, a method for operating the source according to the invention comprises providing radio frequency power to the induction coil with a RF amplifier operating with a variable frequency connected to a matching network mainly comprised of fixed value capacitors. In this device the impedance between the RF power source and the plasma ion source is matched by tuning the RF frequency rather than adjusting the capacitance of the matching network. An option to use a RF power source utilizing lateral diffused metal oxide semiconductor field effect transistor based amplifiers is disclosed.
According to a first aspect of the present invention, there is provided a radiation source comprising: a reservoir configured to retain a volume of fuel; a nozzle, in fluid connection with the reservoir, and configured to direct a stream of fuel along a trajectory towards a plasma formation location; a laser configured to direct laser radiation at the stream at the plasma formation location to generate, in use, a radiation generating plasma; and a contamination filter assembly located in a fuel flow path of the radiation source, upstream of a nozzle outlet, a filter medium of that contamination filter assembly being held in place within the contamination filter assembly by a clamping force provided by one or more objects that at least partially surround the filter medium.
CT devices and methods thereof are disclosed. The CT device comprises a circular electron gun array including a plurality of electron guns, each of the electron guns is configured to emit electron beams along the radial direction of the circular electron gun array in sequence according to a predetermine pulse sequence; an acceleration cavity disposed inside of a circle on which the circular electron gun array is positioned, including a plurality of nested concentric coaxial cavities that operate in π mode for accelerating electron beams emitted from the respective electron guns of the circular electron gun array; a circular transmission target disposed inside of a circle on which the acceleration cavity is positioned and being bombarded by the accelerated electron beams to generate X-rays; and a circular detector configured to receive the X-rays after they have passed through an object to be detected.
A luminaire includes a light source; a wireless communication circuit for communicating with a dimming controller; a storage which stores an identifier of the dimming controller; and a control circuit for dimming light of the light source according to a dimming command transmitted from the dimming coat roller when the luminaire is in a paired state, i.e., a state in which the identifier of the dimming controller is stored in the storage of the luminaire. When the control circuit is in a communication check mode, i.e., a mode for checking whether or not the luminaire is able to communicate with the dimming controller, the control circuit, regardless of whether or not the luminaire is in the paired state with the dimming controller, brings the luminaire into a predetermined illumination state by dimming light of the light source when the wireless communication circuit receives a communication cheek command from the dimming controller.
A lighting control system and method is disclosed for not only controlling visual content loaded within a group set of illumination devices configured within a wireless network, but also for ensuring minimal control delay to those grouped devices. The lighting control system can include a lighting controller device that controls a plurality of lamps within a mesh network, not only to group those lamps but also to assign content to lamps within that group. The combination of a guaranteed groupcast to each of the group of lamps and an acknowledge back from those lamps that is aggregated over a single path achieves the improved lighting control system disclosed herein.
A lighting control system and method is disclosed for not only controlling visual content loaded within a group set of illumination devices configured within a wireless network, but also for ensuring minimal control delay to those grouped devices. The lighting control system can include a lighting controller device that controls a plurality of lamps within a mesh network, not only to group those lamps but also to assign content to lamps within that group. The combination of a guaranteed groupcast to each of the group of lamps and an acknowledge back from those lamps that is aggregated over a single path achieves the improved lighting control system disclosed herein.
A lighting system is provided that has lighting units and sensor units. One of the sensor units is first sensor unit that comprises a user control device for receiving user commands when a user enters the commands at the user control device. The lighting units are controlled according to a lighting plan that defines a group of the lighting units that is to be switched on in response to detection of a user command at the user control device, based on light transfer coefficients relating light intensities at the sensor units to light output from the lighting units. The transfer coefficients from the lighting units to each sensor unit are determined. The lighting plan is determined from the transfer coefficients by selecting the group of lighting units based on the transfer coefficients from the lighting units to the first sensor unit. The transfer coefficients from the lighting units to a sub-set of the sensor units may be used, the sub-set being selected for the first sensor unit, based on the transfer coefficients for the sensor units from an initial group of one or more of the lighting units associated with the first sensor unit.
A color temperature adjusting method of solid state light emitting device, including steps: providing a main light source which emits main light of a first color temperature; providing an adjusting light source, wherein the adjusting light source comprises a red light source, a green light source and a blue light source; and adjusting currents applied to the adjusting light sources to obtain an adjusting light, wherein the adjusting light mixes with the main light of the main light source to obtain an outgoing light of a second color temperature. The second color temperature is different from the first color temperature. The outgoing light has a chromaticity coordinate at a Plank's curve on a CIE 1931 chromaticity coordinates chart.
An illumination device and method are provided for controlling light emitting diodes (LEDs). The LEDs (specifically, the LED loads) are controlled, e.g., brightness and color of the LED loads, independent of a phase-cut dimmer applied to the AC mains feeding a DC power supply. The power supply is active dependent upon the duration of a conduction angle supplied from the dimmer. The power supply, however, produces drive currents that are independent from the conduction angle by using a two-stage power supply and a relatively slow and fast control loops that are controlled through a microprocessor based control circuit. Parameters stored in the control circuit are drawn by the microprocessor to control the two-stage power supply to produce the drive currents independent and decoupled from the conduction angle yet dependent on the controller parameters.
Disclosed is a control circuit of an LED lighting apparatus which is capable of improving power efficiency. The control circuit controls light emission of one or more LED groups in response to changes of a rectified voltage, and includes a current source configured to provide a primary current using a driving current outputted through a current path of a driver and a secondary current using a rectified current provided to a plurality of LED groups. Thus, the control circuit can perform a charging operation using a current provided from the current source, and provide a charge voltage to an additional device.
The invention relates to a LED light source comprising: input terminals (K1, K2) for connection to a mains voltage supply source, a rectifier (RB) coupled to the input terminals for rectifying the mains supply voltage supplied by the mains supply voltage source and comprising rectifier output terminals, a DC-DC converter (CONV) for generating a DC current out of the rectified mains supply voltage, comprising converter input terminals connected to the rectifier output terminals and comprising a first converter output terminal (A) and a second converter output terminal (B), —a LED load (LL) with an anode coupled to the first converter output terminal via a current control element (D5) for blocking a current flowing from the anode of the LED load to the first converter output terminal, and with a cathode coupled to the second converter output terminal via a first controllable switch (M1) having a control electrode coupled to first control circuitry for rendering the controllable switch non-conductive in case the LED light source is in standby mode.
A User Equipment (UE) has multiple transceivers, each having a corresponding receiver configured to communicate on respective carriers. The UE monitors a radio access network (RAN) on a serving cell using a first of the receivers, and indicates to the base station that at least one of its receivers will temporary tune-out from the RAN. The base station receives the indication from the UE, and temporarily suspends communications with the UE.
In an embodiment, an apparatus (e.g., a client device, an eNodeB, MME, S-GW, P-GW, UTRAN component, etc.) detects a first transition of a client device from an active state to an idle state while the client device is allocated a Quality of Service (QoS) link by a serving network. The apparatus caches QoS information associated with the QoS link, and releases the QoS link in response to the detection of the first transition. The apparatus later detects, after the caching and releasing, a second transition of the client device from the idle state back to the active state. The apparatus re-establishes the QoS link in response to the detection of the second transition using the cached QoS information.
A method and apparatus for establishing a device-to-device (D2D) connection in a wireless communication system is provided. A network transmits a connection establishment request message to request of the D2D connection establishment to a first device and a second device, receives a connection establishment response message indicating whether to accept the request of the D2D connection establishment from the first device and the second device, and transmits a connection establishment confirm message to confirm the D2D connection establishment to a first device and a second device. The connection establishment request message includes at least one of a connection establishment type, a quality of (QoS) parameter for the D2D connection, and security information.
A method is provided for performing a random access procedure by a Node-B with a specific user equipment (UE) within a cell in which a plurality of UEs are located together. The Node-B transmits a random access procedure configuration including a basic sequence index related with a random access channel and zero correlation zone (ZCZ) configuration. The Node-B receives a random access preamble corresponding to the random access procedure configuration from the UE over the random access channel. A length of a cyclic part and a length of a sequence part of the random access preamble are differently given based on the random access procedure configuration. The random access preamble is generated from Constant Amplitude Zero Auto-Correlation (CAZAC) sequences based on the basic sequence index by applying a length of a cyclic shift according to the ZCZ configuration.
Embodiments of the present invention relate to communication technologies, in particular, to a method and an apparatus for protocol transmission in a wireless local area network. A method for transmitting multi-user data in a reverse direction protocol according to an embodiment of the present invention includes: within a transmission opportunity (TXOP) of a first station, if the TXOP is not over after the first station finishes sending data to an access point (AP), obtaining, by the AP, the TXOP, where the obtaining, by the AP, the TXOP is implemented through granting a remaining part of the TXOP to the access point AP by the first station as a reverse direction protocol initiator; and within the TXOP, sending, by the AP, second data to at least two stations, where the at least two stations include the first station.
Certain aspects of the present disclosure relate to a robust and systematic multi-user (MU) grouping and scheduling scheme. Certain aspects of the present disclosure provide an apparatus for wireless communications. The apparatus generally includes a processing system configured to: assign devices to one or more groups, wherein each group has at least a number of devices and schedule MU multiple-input multiple-output (MIMO) transmissions to one or more sets of devices, each scheduled set of devices comprising a subset of devices of one of the groups; and an interface configured to output data for simultaneous transmissions to the scheduled sets of devices.
A backhaul radio is disclosed that operates in multipath propagation environments such as obstructed LOS conditions with uncoordinated interference sources in the same operating band. Such a backhaul radio may use a combination of interference mitigation procedures across multiple of the frequency, time, spatial and cancellation domains. Such backhaul radios may communicate with each other to coordinate radio resource allocations such that accurate interference assessment and channel propagation characteristics assessment may be determined during normal operation.
A method and an apparatus for bundling data packet acknowledgments in a wireless communication device is disclosed. The method includes determining a metric proportional to a communication distance between the wireless communication device and a counterpart wireless communication device; selecting a number of data packet acknowledgments to be bundled together according to the determined communication distance such that when the communication distance is higher, the higher number of data packet acknowledgments are bundled together into a single acknowledgment message; and causing transmission of the acknowledgment message comprising the selected number of data packet acknowledgments.
A method and an apparatus are described by which carrier aggregation in a radio network is controlled on the basis of a group of cells which can be aggregated. For example, carrier aggregation group information regarding the group of cells which can be aggregated can be established, transmitted, read and the like, access control policy regarding the group of cells in the radio network which can be aggregated can be set. Moreover, a method and an apparatus is provided by which carrier aggregation in a radio network is controlled, wherein an access control policy regarding a part of the radio network is set.
In order to solve a problem of an accumulation on the transmission side, a delay on the reception side, and the like at the time of transmission in a communication system such as a wireless LAN system, each communication station in a network transmits a beacon in which information with respect to the network is written and sets a state in which a reception operation is performed during periods of time before and after the transmission of the beacon signal when performing access control not to make communication timing of a packet collide with that of another station by detecting a signal transmitted from another station. With performing such processing, a system can be formed based on minimum level of transmission and reception operation when transmission and reception data does not exist in each communication station in the network, and also a data transfer can be performed with latency as small as possible in a minimum necessary level of transmission and reception operation by making a transition of a transmission and reception state in accordance with a fluctuating volume of transmission and reception data.
The present application relates to the field of wireless communications. Disclosed are a channel state information (CSI) reference resource indication and measurement method and device, so as to reduce the complexity of measurement and computation performed by a terminal. In the solution provided by the embodiments of the present application, a network side informs a terminal of a periodic value and/or a subframe offset value of a periodic CSI reference resource, and after the periodic value and/or the subframe offset value of the periodic CSI reference resource on a carrier is determined, the terminal determines, through a frame structure type used by the carrier and according to the determined periodic value and/or subframe offset value of the periodic CSI reference resource, a time-frequency resource corresponding to the effective CSI reference resource and measures the CSI in the determined time-frequency resource. It can be seen from the above that, the solution can effectively reduce the complexity of measurement and computation performed by a terminal.
A method of controlling interference in a cellular communications network comprises, in a first base station of the network: determining that the first base station is suffering from uncontrolled interference from at least one other base station of the network; based on information received from at least one other base station of the network regarding estimates of interference caused at the first base station by at least one user equipment device connected to the respective other base station, selecting a proposed action to mitigate said interference; and notifying the respective other base station of the selection of the proposed action.
This invention provides a method and apparatus for coordinating downlink transmission(s) in a wireless communication system comprising a cluster of base station clients in communication with a base station cluster coordinator. The method comprises: receiving from each of the cluster of base station clients, a UE parameter set for each UE served by the respective base station clients; determining cluster parameter sets in respect of respective transmission modes, based on the UE parameter sets; evaluating the cluster parameter sets at the base station cluster coordinator, in order to select at least one of the transmission modes for the base station clients; generating at the base station cluster coordinator at least one output according to the at least one transmission mode; and transmitting each output to at least one of the base station clients to control the corresponding base station client to perform the selected downlink transmissions.
A method and apparatus for transmitting, by a user equipment, a hybrid automatic repeat request acknowledgement (HARQ-ACK) are provided. The method includes identifying power of the HARQ-ACK based on transmission power control information in first downlink control information; identifying, for frequency division duplexing (FDD), a resource for transmission of the HARQ-ACK based on transmission power control information in second downlink control information for a secondary cell; and transmitting the HARQ-ACK based on the resource.
A method for activating/deactivating secondary carriers of a User Equipment (UE) in a mobile communication system supporting carrier aggregation is provided. The method comprises, receiving a control message including an activation/deactivation Control Element (CE) in a first sub-frame from a Base station, identifying an activation command or a deactivation command of at least one secondary carrier based on the control message, determining whether a current sub-frame is a second sub-frame or not, performing at least one first operation for the at least one secondary carrier in a second sub-frame, and performing, when the activation/deactivation CE indicates deactivation of the at least one secondary carrier, at least one second operation for the at least one secondary carrier no later than the second sub-frame.
Virtualized group-wise communications between a wireless network and a plurality of user equipments (UEs) are supported using UE cooperation. UE cooperation includes receiving, at a cooperating UE (CUE), downlink information from the wireless network destined for a target UE (TUE) and associated with a group identifier (ID). The group ID indicates a virtual multi-point (ViMP) node that includes the TUE and the CUE. The UE cooperation also includes sending the downlink information to the TUE. The UE or UE component can have a processor configured to forward between the wireless network and a TUE at least some information that is associated with a group ID indicating a ViMP node that groups the TUE and the UE.
A system and method for synchronizing the operation of a wireless mobile station (102) and a base station (104) includes receiving a message at the base station (104) indicating a state of operation of the wireless mobile station (102). A determination is made as to whether the base station (104) and the mobile station (102) are in synchronization based upon comparing the state of operation of the mobile station (102) and a state of operation of the base station (104).
Provided is a method for paging a User Equipment (UE) in an idle state by a Mobility Management Entity (MME) in a wireless communication network in which a Packet Switched (PS) domain and a Circuit Switched (CS) domain coexist. The method includes receiving a CS page message for paging the UE in a CS domain; and upon receiving the CS page message, sending a PS page message for paging the UE in a PS domain, the PS page message including a priority indicator, to an Evolved Node B (ENB) where the UE is located.
The invention relates to an apparatus including at least one processor and at least one memory including a computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to: determine usable power for a physical downlink control channel information unit based on resource consumption and available power resources, and adjust the usable power orthogonal frequency division multiplexed symbol-wise in such a manner that the available power resources are not exceeded or that exceeding is given to physical downlink control channel information units according to hierarchy of needs or that the exceeding is evenly distributed over the physical downlink control channel information units.
In a wireless communication system, there are several wireless channels used for communication between users and a base station. Channel characteristics may be defined by whether a channel is carrying traffic data and the timing of the channel transmissions with respect to channels not carrying traffic data. Different power levels between channels carrying traffic data or not may be defined and individual power levels of each channel may be amended based on individual power level command responses.
Methods, systems, and devices are described for adapting blind reception duration for range and congestion. A wireless station may measure channel conditions (e.g., range to an access point (AP) and channel congestion), and adjust one or more sleep timers based on the conditions. The sleep timers may each be associated with a window for reception of an expected transmission. If the transmission is not received in the window, the station may enter a sleep state to conserve power. In one example, a beacon miss timer is adjusted, and the expected wireless transmission is a delivery traffic indication message (DTIM). In another example, a content after beacon (CAB) timer is adjusted and the expected wireless transmission is the CAB. In some cases, the station may measure a delay for a number of beacons and determine the adjustment based on the delays.
Embodiments of the present invention provide a method of reducing power consumption in a wireless network device, comprising determining a duration prior to a beacon being received by the device; comparing the duration against a predetermined value; and adjusting a duration of a sleep period in response to the comparison.
Embodiments may comprise an orthogonal frequency division multiplexing (OFDM) system operating in the 1 GHz and lower frequency bands. In many embodiments, physical layer logic may implement a new preamble structure with a new signal field. Embodiments may store the preamble structure and/or a preamble based upon the new preamble structure on a machine-accessible medium. Some embodiments may generate and transmit a communication with the new preamble structure. Further embodiments may receive and detect communications with the new preamble structure.
A method of connecting user equipment to a communications network via a wireless local area network, said method comprising the steps of a first selecting step for selecting an access point; a second selecting step for selecting a communications network; wherein if said connection fails, sending a message comprising information indicating if said access point supports inter-working with a communications network.
A node for a communication system that is configured to communicate with a mobile node via a first connection and to communicate with a third node via a first forwarding path is disclosed. After a procedure for handover of the first connection to a second connection between the mobile node and a target network node is initiated, data is communicated from the node to the third node for transmission to the target network node via a second forwarding path. The third node is configured to receive the data and to forward it to the target network node.
This disclosure sets forth methods and devices for communication between mobile devices and base stations with active and dormant states. In an embodiment, a base station transmits system information during an active state of the base station with at least one system-information message. The at least one system-information message includes a SystemInformationBlockType1 (“SIB1”) message with a first update-indicator field. The base station selects an update value that indicates whether the system information has changed since a previous transmission of a previous SIB1 message. The base station transmits at least one dormant-state message during a dormant state of the base station with the selected update value in a second update-indicator field of the at least one dormant-state message.
A system and method for inter-femto access point handoffs are provided. A method for gateway operations includes receiving a handoff required message, determining a handoff target based on information in the handoff required message, sending a handoff request to the handoff target, performing a bearer update, and initiating a handoff. The handoff target and a handoff source are anchored by a gateway.
Systems, methods, and instrumentalities are disclosed to communicate traffic flow information to a network. A user equipment (UE) may detect a traffic flow (e.g., using one or more of the traffic detection implementations described herein). A 5-tuple associated with the traffic flow may be unknown by the network. The UE may issue an alert to the network. The alert may indicate to the network that the traffic flow has been detected. The UE may determine the 5-tuple associated with the traffic flow. The UE may report the 5-tuple to the network. The report may be in response to one or more of: a request received from the network requesting traffic flow information; or, a determination that a first policy condition has been met.
Techniques for providing offload services via a neutral host network (NHN) are described here. An example method may include establishing an authorization relationship, at the NHN, with a mobile network. In addition, the example method may include sending a notification indicating the authorization relationship of the NHN with the mobile network to one or more user equipments (UEs) within radio coverage of the NHN, wherein the authorization relationship specifies that the NHN is authorized by the mobile network to provide offload services for at least one UE of the one or more UEs that is associated with the mobile network.
The present invention describes systems and methods for improved wireless interface integration. An exemplary embodiment of the present invention provides a wireless interface aggregation system having a computing device including a processor, a memory, a first wireless interface with a first observed throughput rate in a first network environment and second wireless interface with a second observed throughput rate in the first network environment. The aggregation control module is configured to control the transmission and wireless interface and the second wireless interface to provide an overall throughput rate for the computing device in the first network environment greater than sum of the first observed throughput rate and the second observed throughput rate.
A device may receive performance information for a traffic flow assigned to a quality of service (QoS) class. The device may determine an overall packet delay, associated with the traffic flow, based on the performance information. The device may determine a radio access network (RAN) delay, associated with the traffic flow, based on the performance information. The device may determine a target packet delay associated with the QoS class. The device may identify, based on the target packet delay, the RAN delay, and the overall packet delay, a QoS sub-class to which the traffic flow is to be assigned. The QoS sub-class may be associated with the QoS class. The device may cause packets, associated with the traffic flow, to be marked for treatment in accordance with the QoS sub-class.
The present invention provides a method, device and system for maintaining wireless networks, wherein the method includes: an AC receives a wireless access network status parameter fedback by an AP according to a time triggering mode or an event triggering mode; the AC updates the Status Set parameter of the AP locally stored, according to the wireless access network status parameter; the AC updates an event occurrence status parameter of the AP locally stored, according to the updated Status Set parameter and the event update strategy locally stored, wherein the event update strategy refers to an corresponding relationship between the Status Set parameter and the event occurrence status parameter; and the AC maintains the wireless network configuration parameter of the AP according to the updated event occurrence status parameter. By use of the present invention, the problems of a high maintenance cost for artificially maintaining wireless networks and a long maintenance time after a fault occurs are solved, and the stability of the user wireless networks are ensured.
Channel quality may be measured in a device-to-device (D2D) communication network. The D2D communication network may include one or more D2D wireless transmit/receive units (WTRUs), wherein the D2D WTRUs may communicate using a D2D bandwidth. A D2D WTRU may receive a channel measurement resource configuration corresponding to a channel measurement resource. The D2D WTRU may further receive an RS on the channel measurement resource. The D2D WTRU may measure one or more channel state parameters from the channel measurement resource for a part of bandwidth overlapping with a D2D communication bandwidth, when the RS bandwidth is greater than the D2D communication bandwidth. The D2D WTRU may report the channel state parameters to a controlling entity. The controlling entity may configure a D2D frequency allocation between a transmitting device and a receiving device. The D2D frequency allocation may be based on the time averaged measurement.
A mobile device or a server may be configured to automatically define a customized mute status. Data indicative of a physical movement of the mobile device is received. In response, the mobile device is monitored to determine whether one or more notifications are received at the mobile device and whether a responsive action responsive to the one or more notifications is taken at the mobile device. When no responsive action is taken, a customized mute status for the mobile device is defined or stored.
Apparatus comprises: a multi-element antenna; and a transmitter configured to broadcasting multiple packets from the multi-element antenna, wherein each packet comprising: a positioning part; and a calibration data part, wherein the calibration data part of a packet comprises: a portion of calibration data; and data indicating a location of the portion of calibration data in a set of calibration data. The transmitter is configured: to switch between different elements of the multi-element antenna in a sequence when broadcasting the positioning part of the packet; and to transmit all of the calibration data part of the packet without switching between different elements of the multi-element antenna.
Embodiments include a system, method, and computer program product for improving public safety communications and real-time information sharing to enable a public safety user to access available, secure private wireless communications (PWC) networks within a vicinity of an emergency for communications and data-sharing purposes. In an embodiment, a universal encryption key (UEK) is stored on a public safety access device. The public safety access device is providing access to a secure PWC network. The UEK is a key established by a certificate authority that enables public safety personnel to access the secure PWC network. Then, a public safety encryption key (PSKey) is received by the public safety access device from a user communication device. The public safety access device enables access for the user communication to access the secure PWC network upon a determination that the received PSKey is associated with the UEK.
A radio access network element (101) obtains a permanent subscriber identity (IMSI) of a User Equipment (103) in an LTE wireless communication system (100) by sending a “fake” service reject message to a User Equipment which has attempted to attach to a cell (102) in a request for services message which includes its S-TMSI. The reject message may include a cause code which results in the UE attempting to attach again, this time using its IMSI. The fake service reject message may be generated in a an eNode B serving one or more macrocells or a evolved Home Node B serving a small cell.
A mobile device may include a plurality of sensors and a processor. The processor may be configured to determine trust data for an asset based upon inputs from the plurality of sensors, determine whether an asset is accessible or not accessible based upon evaluating the trust data with a trust determination algorithm, and continuously update the trust data to continue to allow access to the asset or revoke access to the asset based upon the inputs from the plurality of sensors.
Techniques for authenticating the identity of a caller in a telephone call are disclosed. The device generating the call implements encrypting caller identification information and initiating the telephone call, said initiating comprising providing a voice carrier signal including the caller identification information; and simultaneously providing a data carrier signal including the encrypted caller identification information. The receiving device implements receiving the telephone call; decrypting the encrypted caller identification information at the recipient device; and verifying the identity of at least an unknown caller at the recipient device by at least one of verifying the authenticity of a certificate used to encrypt the caller identification information; and comparing the decrypted caller identification information with the caller identification information from the voice carrier signal. A telephony device implementing such an authentication technique is also disclosed.
Techniques are described for securely provisioning a client device. A client device may output first client information over a secure interface to a trusted device to be transmitted to an authentication server. Second client information related to the first client information may be transmitted to the authentication server. The authentication server may link the second client information and the first client information. The client device may receive an encrypted authentication credential from the authentication server. The authentication credential may be encrypted based at least in part on the first client information or the second client information. The client device may decrypt the encrypted authentication credential using the first client information, the second client information, or a shared secret key.
According to one embodiment of the present invention, a method for authenticating access authority for a specific resource in a wireless communication system is provided. The method is performed by a terminal and includes the steps of: receiving from a server, an operation for a specific object of a terminal, a specific object instance, or a resource (hereinafter referred to as “operation target”) belonging to the specific object instance; and checking whether an access authority for the operation target is granted for a server based on access authority information associated with the operation target. The method further includes a step of determining whether at least one resource belonging to the operation target supports the operation based on one or both of the operation and the operation target when the access authority for the operation target is granted, and the access authority information associated with the operation target can be specified for a specific object instance to which the one or more resources belong.
A subscriber station performs a method for managing a security key. The method includes generating, for each of the base stations, an input value for generation of the security key for data transmission and reception with the each base station; transmitting, to the each base station, the input value for a corresponding base station; and generating the security key of the corresponding base station by using the input value of the each base station. A base station provides cooperative communication to the subscriber station.
Toll-free application data network access is disclosed. A device for providing data connectivity includes a connection detector configured to receive a data connectivity request from an application installed on the device, a configuration manager for retrieving a configuration file for the application identified from the data connectivity request, the configuration file defining conditions to allow connectivity for the application under operator specific billing, and an authorization module configured to access the configuration file, tag the data connectivity request with a first tag if the data connectivity request matches the conditions of the configuration file, the tag being indicative of operator specific billing for the application, and leave the data connectivity request unchanged otherwise.
A system for and method of communication information transmission are provided. A method of communication information transmission performed by a first device includes: receiving a communication request from a second device; obtaining surrounding situation information of the first device, the surrounding situation information including information related to surroundings of the first device; and determining at least one third device to process the communication request based on the surrounding situation information.
A device may receive a text message or a multimedia message to be received by a receiving device. The message may be stored by one or more storage devices. The device may determine that the message is to be received by the receiving device via a wireless local area network (WLAN). The device may send, to the receiving device, a notification associated with the message. The device may identify a storage device, of the one or more storage devices, to provide the message to the receiving device. The device may manage a synchronization between the receiving device and the storage device via the WLAN. The synchronization may cause the message to be received by the receiving device. The device may receive an indication that the receiving device has received the message, and may provide closure information. The closure information may prevent the message from being delivered via a cellular network.
A radio receives a call including a call include bitmask (CIB). The radio retrieves a call include list (CIL) that, for each bit position in the CIB, maps the bit position to one of a radio identifier, a talk group identifier, and a sub-CIL. The radio determines that one bit position in the CIB is set to a value indicating that a radio associated with a radio identifier mapped to the bit position in the CIB via the CIL or to a talk group identifier mapped to the bit position in the CIB via the CIL are to be included in the call. The radio matches its identifier to the radio identifier mapped to the bit position or matches a talk group to which it subscribes to the talk group identifier mapped to the at least one bit position and unmutes the call.
A server is configured to establish a communication session between electronic devices, receive first information about a time range and second information about a location range from a first electronic device, send third information to the first device, the third information being information about one or more users with whom a user of the first device establishes a human relationship, identify a user selected among the one or more users, store the first information and the second information in a database in connection with identifiers of the user and the identified user, monitor a location of at least one of the first device and a second device of the identified user based on the first and second information, and send, when one of the first or second device deviates from the location range, a notification message to the other one of the first or second device.
Provided herein are methods and systems relating to location-based services such as providing a geofencing, outputting location-based information on a mobile device, varying transmissions to and from a mobile device, and providing location-based alerts. More specifically, a method can include receiving data defining a geofence, monitoring a current location, comparing the current location with the geofence, determining that the current location is within the geofence, and in response altering the state of an application on the mobile device.
A system for exchanging GPS or other position data between wireless devices for purposes of group activities, child location monitoring, work group coordination, dispatching of employees etc. Cell phones and other wireless devices with GPS receivers have loaded therein a Buddy Watch application and a TalkControl application. The Buddy Watch application communicates with the GPS receiver and other wireless devices operated by buddies registered in the users phone as part of buddy groups or individually. GPS position data and historical GPS position data can be exchanged between cell phones of buddies and instant buddies such as tow truck drivers via a buddy watch server. Emergency monitoring services can be set up with notifications to programmable individuals in case an individual does not respond. Positions and tracks can be displayed. TalkControl simplifies and automates the process of joining talk groups for walkie talkie services such as that provided by Nextel.
A method and system for generating a location identifier using a location code and a grid coordinate. The location code corresponds to a defined geographical area, such as a postal code or an area code. A grid coordinate can be determined based on destination location information, such as an address, a GPS-determined position, or other reference to a specific physical location. The location identifier is combined with the location code to generate a location identifier, which can be encoded in a computer readable format and placed on items for use in a distribution network. The location identifier can be used to facilitate domestic or international distribution of items using a common format or addressing scheme. The domestic and foreign distribution networks read and interpret location identifiers in order to deliver items.
Mobile device for communicating arrival information at a waypoint, communicating that information to a server, receiving a set of tasks (statically assigned or dynamically assigned) for the user (for example, from the server or from another user), displaying the set of tasks to the user, receiving a completion response (successful or unsuccessful) from the user, and proceeding to the next waypoint along a route/trip plan. A coordination server facilitates communication of a list of tasks assigned to a user to be performed at a specified location. The list of tasks is delivered to the user of the first mobile device by the coordination server (if such tasks exist) when the coordination server receives notification from the first mobile device indicating arrival at a specific location.
A method and system for determining a position of a UE includes a first network node receiving a request for positioning information about the UE. The first network node requests a first positioning procedure at a first location node. The first location node determines using the first positioning procedure that involvement by a second location node is needed. The first location node initiates a trigger for positioning information about the UE to be sent to the second location node. The second location node, upon receiving the trigger for positioning information and determining the presence of an environment measurement parameter, determines the position information of the UE by performing a second positioning procedure based on the environment measurement parameter, and sends a position calculation response with the positioning information.
The accessing of event related content on a client device at an event techniques include a method, and non-transitory computer-readable storage medium. In some embodiments of these techniques, the method includes receiving a request to check-in to the event from the client device. The check-in request includes geographic location information of the client device. The method further includes determining whether the client device is located at a venue holding the event based on the received geographic location information of the client device and a first predetermined radius. The method further includes determining whether the event at the venue is in progress. The method further includes transmitting a first plurality of event information to the client device based upon determination that the client device is located at the venue and the event is in progress.
A communication apparatus may comprise a first wireless interface and a second wireless interface configured to establish a first type of wireless connection with an external apparatus, the first type of wireless connection being a connection where the communication apparatus operates as a client and the external apparatus operates as a server. The second wireless interface may be further configured to supply wireless information to the external apparatus using the first type of wireless connection, regardless of whether request information for requesting supply of the wireless information is obtained from the external apparatus. A controller may be configured to establish a particular wireless connection with the external apparatus via the first wireless interface using the wireless information after the wireless information is supplied to the external apparatus.
A method for tracking an entity is disclosed. In one embodiment, a plurality of messages conveying an identification of an entity are received using a wireless identification component. A geographic location of the wireless identification component is determined by a position determining component wherein the geographic location describes a respective geographic location of the wireless identification component when each of the plurality of messages is received. A geographic position of the entity is determined based upon a known spatial relationship between the position determining component and the wireless identification component.
A system, method, and apparatus are provided for establishing a wireless network connection between a mobile terminal and an electronic apparatus by using a near field communication network. At least one electronic apparatus is connected to the near field communication network. A mobile terminal is connected to the near field communication network, exchanges information with the at least one electronic apparatus for a wireless communication network connection through the connected near field communication network, and establishes the wireless communication network connection with the at least one electronic apparatus based on the exchanged information.
The present disclosure relates to a method and an electronic device for processing data on the basis of a Bluetooth Low Energy (BLE) protocol. The electronic device includes a Bluetooth control module and a processor. The Bluetooth control module stores a modified BLE protocol stack including at least two Attribute Protocols (ATTs) for use with an application, the modified BLE protocol stack includes a first path and a second path. The first path includes a first ATT protocol to process an ATT command of the application, and the second path includes a second ATT protocol to process an ATT command of the application. The processor is coupled to the Bluetooth control module. The processor processes data of the application including the ATT command, using the modified BLE protocol stack including the at least two ATTs of the Bluetooth control module.
A method and system for pairing devices comprises transmitting a plurality of communication signals from each of a plurality of devices and setting an initial threshold vector of signal strengths as a current threshold vector of signal strengths for at least one target device selected from among the plurality of devices. The embodiment includes pairing at least one client device with the at least one target device when a measured vector of signal strengths exceeds the current threshold vector of signal strengths and adjusting the current threshold vector of signal strengths according to the pairing between the client device and the target device, thereby adaptively adjusting the current threshold vector of signal strengths.
A method of performing a downlink machine type communication from a base station to a MTC (machine type communication) terminal includes, at the base station, transmitting at least one of a system information—the system information excluding a Master Information Block (MIB)—, a control information and data to the MTC terminal using a system bandwidth having a predetermined size. The base station performs frequency hopping using a frequency hopping pattern in a unit of narrow band on the at least one of the system information—the system information excluding a Master Information Block (MIB)—, the control information and the data to transmit to the MTC terminal, and the narrow band is less than the system bandwidth.
A method of selecting an external electronic device connected with an electronic device is provided. The method determining, among the plurality of external electronic devices, at least one external electronic device connected with the electronic device, transmitting signals to the at least one external electronic device, receiving data corresponding to the signals from the at least one external electronic device, selecting one of the at least one external electronic device based on the received data and transmitting an operation execution signal for the data to the selected external electronic device. A method of selecting an external electronic device connected with electronic device is provided. The method includes receiving a signal from the electronic device, transmitting data corresponding to the signal to the electronic device, receiving an operation execution signal for the data from the electronic device and performing at least one of various operations according to the operation execution signal.
Systems, methods, and instrumentalities may implement service-based discovery in a network, such as a 3GPP or 3GPP2 network. A Discovery Server may be used to query and find services offered by the network or by entities that interface with the network. Situational context information or policy information, or both, may be communicated to the discovery server so that the Discovery Server can provide context-aware and policy-based discovery services. The Discovery Server may be used to control which of the entities that interface with the network can discover one another. The Discovery Server may support queries based on, for example, the type of MTC entity, the type of services hosted on the entity, the availability times of the entity, types of protocols supported, levels of Quality of Service (QoS) supported, and MTC-IWF services.
A selective audio source enhancement system includes a processor and a memory, and a pre-processing unit configured to receive audio data including a target audio signal, and to perform sub-band domain decomposition of the audio data to generate buffered outputs. In addition, the system includes a target source detection unit configured to receive the buffered outputs, and to generate a target presence probability corresponding to the target audio signal, as well as a spatial filter estimation unit configured to receive the target presence probability, and to transform frames buffered in each sub-band into a higher resolution frequency-domain. The system also includes a spectral filtering unit configured to retrieve a multichannel image of the target audio signal and noise signals associated with the target audio signal, and an audio synthesis unit configured to extract an enhanced mono signal corresponding to the target audio signal from the multichannel image.
The present disclosure provides a method for testing an apparatus which comprises a set of operational subunits each comprising a moving element, wherein the moving elements move between respective first and second extreme positions, the method comprising: transferring to the apparatus stabilization control commands; transferring to the apparatus first latching-commands for latching to the first extreme position a candidate moving element which is a moving element of a candidate operational subunit; when the first latching control commands are in effect, measuring a first output frequency of an oscillator whose output is coupled to the candidate operational subunit in an electrical coupling setup which causes the output frequency of the oscillator to depend on positions of a plurality of moving elements which comprises the candidate moving element; and based on the first output frequency determining a state of the candidate operational subunit.
An audio content playback method for a portable terminal The audio content playback method includes checking a channel that is supportable by audio content that is currently engaged in group's simultaneous playback, in group's simultaneous playback of the audio content. The method includes allocating a channel to each of devices included in a group based on position information of each device included in the group or based on an input state in a user interface environment that is preset for channel allocation for each device included in the group, and transmitting the allocated channel information to each device included in the group to allow the device to select its allocated channel and play the audio content.
Method and systems (e.g., for use in hearing aids, IAPs, etc) to process an audio signal include receiving an audio signal input; separating the audio signal input into a plurality of frequency bands; and compressing each of the plurality of frequency bands. Compressing each respective frequency band of the plurality of frequency bands may include applying a time-varying gain to each respective frequency band based on a suppressive level for the respective frequency band resulting in a compressed respective frequency band (e.g., wherein the suppressive level for the respective frequency band is dependent on the audio signal input level of one or more frequency bands adjacent to the respective frequency band to which the gain is applied). The compressed respective frequency bands may be combined for use in providing an audio signal.
A mobile communication device and a method of setting tone color, which allow a user to set the tone color of received sound. Provided are a normal mode, which sets the equalizer using GCF standards stored in an internal memory or equalizer setting values selected by a provider, a country-specific mode, which uses country-specific setting, and a user mode, in which a user can set frequency-specific gains of the received sound, and one mode is selected from the provided mode, so that the tone color of the received sound can be adjusted according to the selection. Telephone speech quality can be optimized for user preference, network environments and language characteristics.
There is provided an input device including at least two microphones placed at different positions on a chassis to face different directions on one of space axes, a low-frequency bandwidth extracting part for extracting a low-frequency bandwidth signal from a signal input from the microphones, a phase difference calculating part for calculating a phase difference using the low-frequency bandwidth signal extracted by the low-frequency bandwidth extracting part; and a control signal generating part for generating a control signal based on the phase difference calculated by the phase difference calculating part.
A device includes an ear occlude, an output transducer that is acoustically coupled to an ear canal of a wearer of the device, a voice microphone configured to generate a first electrical signal that is proportional to a voice-generated sound pressure at the microphone, and signal processing circuitry, electrically coupled to the output transducer and the microphone, including a compensator configured to generate, from the first electrical signal, a second electrical signal, and output the second electrical signal to the output transducer, wherein the compensator is tuned to cause GOE, a ratio of a sound pressure within the ear canal to a voice-generated sound pressure at a mouth reference point when the ear is occluded and electronically-aided to be approximately equal to GU, a ratio of the sound pressure within the ear canal to the voice-generated sound pressure at the mouth reference point when the ear is unoccluded.
Systems and methods for packet switching in a network, including two or more hybrid packet/circuit switching network architectures configured to connect two or more core level switches in the network architectures, the network architectures being controlled and managed using a centralized software defined network (SDN) control plane. An optical ring network may be configured to interconnect the two or more hybrid network architectures, and one or more hybrid electrical/optical packet/circuit switches configured to perform switching and traffic aggregation. One or more high-speed optical interfaces and one or more low-speed electrical/optical interfaces may be configured to transmit data.
Described herein is a wavelength selective switch (WSS) type optical switching device (1) configured for switching input optical beams from input optical fiber ports (3, 5 and 7) to an output optical fiber port (9). Device (1) includes a wavelength dispersive grism element (13) for spatially dispersing the individual wavelength channels from an input optical beam in the direction of a second axis (y-axis). The optical beams propagate from input ports (3, 5 and 7) in a forward direction and are reflected from a liquid crystal on silicon (LCOS) device (11) in a return direction to output port (9). The input optical beams are transmitted through a port selecting module (21), which provides polarization diversity to device (1) and provides capability to restrict optical beams returning from LCOS device (11) from being coupled back into input ports (3, 5 and 7).
A computer-implemented method for operating a video management and marketing system that enables managing and marketing videos produced or provided by a user includes a processor configures an embed code that is unique to the user to show a real-time call to action that streams real-time data in one or more videos displayed to a viewer at a viewer device; the processor displays the real-time call to action during playback of the video at a first site and uses the real-time call to action to fetch call to action information on the fly; and the processor automatically forwards the viewer device to a second site, where the call to action information is displayed, upon completion of playback of the video at the first site.
A method for providing an interface for a television device is provided, including the following method operations: identifying available services for consumption on a television device, wherein the available services include two or more of a broadcast television service, an on-demand video service, and an internet content service; determining a current date and time; determining content items available for consumption from each of the available services at the current date and time; determining an allocation of display locations in a cross-platform interface for content items from each of the available services, the allocation defining a relative amount of display locations for each of the available services based on a device profile associated with the television device; assigning content items to the display locations in accordance with the determined allocation.
A method, apparatus, system, and computer program product for auto-installing an integrated receiver/decoder (IRD) includes issuing an auto-installation command from the IRD to an outdoor unit (ODU) and receiving a plurality of tones from the ODU in response to the auto-installation command, each tone representing a center frequency of available user bands (UBs). The auto-installation also includes acquiring a UB center frequency by the IRD, requesting the ODU to confirm a UB number corresponding to the acquired UB center frequency, and receiving confirmation from the ODU that a UB number corresponds to the acquired UB center frequency. The auto-installation also includes sending an acceptance of the assigned UB number from the IRD to signal the ODU that it may mark the assigned UB as assigned.
Electronic Guide produces give the user the ability to videotape selected programs. Once a program has successfully been taped a message is displayed, reminding the viewer that they have taped it. (E.g. “You taped Xxxxx; have you watched it yet?”) Information comprising information that shows are taped, the particular shows taped and viewer profiles allow advertisements targeted to the viewer who typically records a given type of programming to be presented. In an embodiment the display of the reminders is made conditional upon acceptance of advertising (for example, based on a piece of data transmitted along with other data related to that show), and can be sold to the broadcasters who transmitted the show. This information is marketed as a peculiarly well-targeted ad for the show, causing it to continue to produce value for the broadcaster after the broadcast is complete. Broadcasters, in turn, may offer the reminders to major advertisers as they sell commercial air time during the show, as a premium feature of the air time. The advertisement may be sent over channels comprising the video blanking interval, the Internet or on another channel.
System and method are provided to associate or compare media programs. A method includes: obtaining, using at least one processing circuit, first metadata for a first media program and second metadata for a second media program, wherein the first metadata are organized into a plurality of first fields, and the second metadata are organized into a plurality of second fields; extracting, using at least one processing circuit, a plurality of first tokens from one of the plurality of the first fields and a plurality of second tokens from one of the plurality of second fields; assigning a weight factor to each of the first and second tokens; cross-correlating the first and second tokens between the plurality of first fields and the plurality of second fields; and calculating a similarity score between the first and second media programs based on the cross-correlating.
Providing a notification of an upcoming live media program to a user including determining that the upcoming live media program is scheduled to start within a predefined amount of time that serves as an indication that the upcoming live media program is about to start, where the upcoming live media program has been automatically determined to be of interest to the user. A client device of the user is determined to be not connected to a service providing playback of the upcoming live media program and the program is not currently scheduled to be recorded for the user. Responsive to determining that the upcoming live media program is not currently scheduled to be recorded for the user, a notification is transmitted to the user that indicates that the upcoming live media program is about to start.
A data analyzer engine can be configured to receive feedback indicating different Content currently consumed by subscribers in a cable network environment. The data analyzer engine analyzes the feedback to identify most popular consumed content amongst the different content and produces a content guide to include multiple selectable channels from which content is available for retrieval over a shared communication link in the cable network environment. The content guide can include one or more selectable viewing options to view a rendition of content being identified as more or most popular. Each of one or more playback devices or other suitable resources retrieves and initiates Display of the content guide on a display screen. Accordingly, a subscriber can view Different available content options as well as an identification of content that is currently the most popular consumed content amongst viewers.
A system and method for providing awareness in a hospitality environment are presented. In one embodiment, a vertical and horizontal array of set-top boxes is provided and each set-top box includes an identification corresponding to the room in which the set-top box is placed. Each set-top box includes a wireless transceiver that periodically transmits an identification beacon that is received by a proximate wireless-enabled interactive device. The proximate wireless-enabled interactive device, in turn, broadcasts data packets including an indication of the strength of set-top box identification signals received. The broadcasts are received by a server via an array of wireless routers. The location of the proximate wireless-enabled interactive device is determined based on the signal strength information in the data packets.
Systems and methods are provided for detecting inconsistent user actions and providing feedback about assets. A user may perform a first action restricting access to a first asset. The system may detect whether a second action performed relative to a second asset that has a similar attribute as the first asset is inconsistent with the first asset. The inconsistency may be detected when the second action removes or is an inaction that does not class access restrictions on the second asset. The system may alert the user about the inconsistency and the user may act on the alert by providing feedback about the inconsistency and/or the first/second asset, ignoring the inconsistency and/or placing an access restriction or other action consistent with the first action relative to the second asset. The user may also provide detailed feedback about an inconsistency or asset through a website accessed on another device.
An electronic device displays a first video stream on a display. While displaying the first video stream on the display, the device allocates, in accordance with a historical pattern of video stream switching of a particular user, available bandwidth for receiving data at the device at least between receiving the first video stream and preloading a second, non-displayed video stream. The device receives the first video stream and preloads the second, non-displayed video stream in accordance with the allocated available bandwidth. The device receives a request to display the second video stream on the display. In response to receiving the request to display the second video stream on the display, the device displays the preloaded second video stream on the display.
System and method to synchronize video playback on mobile devices, the method including: receiving, from a first mobile device, a message directed to a second mobile device, the message including an instruction to display a video on the second mobile device; an indication of the time at which the first mobile device sent the message; and a video position of the first mobile device when the message was sent; calculating a delay between the first mobile device and the second mobile device; estimating a video seek time for the second mobile device to seek a video position on the second mobile device; seeking a video position p2 on the second mobile device; and starting display of the video on the second mobile device at video position p2.
Systems, methods, and computer-readable storage media are provided for providing target content, such as advertisements, based on one or more selected video frames. A set of video frames and target content is received. The target content is to be presented upon detection of a playback of the set of video frames. The playback of the set of video frames is detected. In response to the detection of the playback of the set of video frames, the target content is communicated for presentation.
Embodiments herein provide for In-Flight Entertainment (IFE) content distribution onboard an aircraft to Personal Electronic Devices (PEDs) of passengers over Universal Serial Bus (USB). One embodiment comprises system that includes a media server disposed within the aircraft. The media server provides IFE content streams to the PEDs of passengers. The system further includes an Ethernet network that is electrically coupled to the media server, and a plurality of IFE distribution units that are disposed within the aircraft. At least one of the IFE distribution units includes an Ethernet interface that is electrically coupled to the Ethernet network, a USB port located proximate to a seat within the aircraft, and a controller. The controller is electrically coupled to the Ethernet interface and the USB port, and converts the IFE content streams from the media server from Ethernet frames to USB frames for presentation to the PEDs.
It is presented a splicing device for replacing video frames in a transport stream. The splicing device comprises a processor; and a memory storing instructions that, when executed by the processor, causes the splicing device to: receive the transport stream comprising frames of a first program stream and frames of a second program stream, and replace at least one of the frames of the second program stream with frames of a replacement program stored in a storage encoded at a plurality of different bit rates, wherein the frames of the replacement program are selected of from the plurality of different bit rates to comply with a maximum bandwidth of the transport stream.
A pixel pre-processing comprises obtaining an original linear luminance component value of a pixel in a picture in a third color space determined based on a linear color of the pixel in a first color space. A non-linear luma component value in a second color space is derived for the pixel based on a first non-linear chroma component value in the second color space, a second non-linear chroma component value in the second color space and the original linear luminance component value in the third color space. The pre-processing reduces luminance artifacts that otherwise may occur when chroma subsampling is used in combination with a non-linear transfer function.
Method and apparatus for deriving a motion vector at a video decoder. A block-based motion vector may be produced at the video decoder by utilizing motion estimation among available pixels relative to blocks in one or more reference frames. The available pixels could be, for example, spatially neighboring blocks in the sequential scan coding order of a current frame, blocks in a previously decoded frame, or blocks in a downsampled frame in a lower pyramid when layered coding has been used.
In some embodiments, a server system composites in real-time, in response to a user video search query, a standard-compliant (e.g. MPEG-4/H.264) SD or HD video stream encoding a rectangular (x-y) composite video preview panel array (grid) of video search results. Each panel/tile in the rectangular panel array displays a temporal section (e.g. the first 90 seconds, looped-back) of a video identified in response to the user query. Generating the composite video panel array in real-time is achieved by compositing the component video panels in the compressed domain, after each panel undergoes off-line a compressed-domain pre-compositing preparation process that facilitates dynamic compositing of the panels into a single video stream. The pre-compositing preparation includes transcoding to a format having a down-scaled common resolution, common GOP structure, and one-slice-per-row slice structure.
An image includes at least first and second digital samples corresponding to first and second different color components. The image is compressed by detecting level changes of a first signal formed of the sequence of the first samples and by detecting level changes of a second signal formed of the sequence of the second samples. A determination is made as to whether the detected changes coincide with each other. The first signal is decimated. The compressed image that is output includes the decimated first signal, the second signal and a further signal indicative of coinciding detected changes.
In one example, an apparatus includes a video encoder configured to partition a block of video data into a first geometric partition and a second geometric partition using a geometric motion partition line, wherein the block comprises N×N pixels, divide the block of video data into four equally-sized, non-overlapping (N/2)×(N/2) sub-blocks, and encode at least one of the sub-blocks through which the geometric motion partition line passes using a transform size smaller than (N/2)×(N/2). The video encoder may determine transform sizes for the sub-blocks based on whether the geometric motion partition line passes through the sub-blocks. In one example, a video decoder may inverse transform the sub-blocks, and may determine transform sizes for the sub-blocks based on whether the geometric motion partition line passes through the sub-blocks.
Techniques for coding data, such as, e.g., video data, include coding a first syntax element, conforming to a particular type of syntax element, of a first slice of video data, conforming to a first slice type, using an initialization value set. The techniques further include coding a second syntax element, conforming to the same type of syntax element, of a second slice of video data, conforming to a second slice type, using the same initialization value set. In this example, the first slice type may be different from the second slice type. Also in this example, at least one of the first slice type and the second slice type may be a temporally predicted slice type. For example, the at least one of the first and second slice types may be a unidirectional inter-prediction (P) slice type, or a bi-directional inter-prediction (B) slice type.
An image coding method includes: writing, into a sequence parameter set, buffer description defining information for defining a plurality of buffer descriptions; writing, into the sequence parameter set, reference list description defining information for defining a plurality of reference list descriptions corresponding to the buffer descriptions; and writing, into a first header of each processing unit which is included in a coded bitstream, buffer description selecting information for specifying a selected buffer description.
The present invention relates to a computer device comprising a detector for detecting a user's eye and a processor. The processor is configured to determine if the position of the user's eye is kept in a zone for a first time period, and if the position of the user's eye is kept in the zone for the first time period, suspend for a second time period detecting the user's eye and determining the position of the user's eye.
A controlling method suitable for an electronic apparatus is disclosed herein. The electronic apparatus includes a first image-capturing unit and a second image-capturing unit. The controlling method includes steps of: obtaining a plurality of second images by the second image-capturing unit when the first image-capturing unit is operated to capture a plurality of first images for a stereo process; detecting an object in the second images; calculating a relative displacement of the object in the second images; and, determining whether the first images are captured by an inappropriate gesture according to the relative displacement calculated from the second images.
Systems and methods for the generation of depth data for a scene using images captured by a camera-enabled mobile device are provided. According to a particular implementation of the present disclosure, a reference image can be captured of a scene with an image capture device, such as an image capture device integrated with a camera-enabled mobile device. A short video or sequence of images can then be captured from multiple different poses relative to the reference scene. The captured image and video can then be processed using computer vision techniques to produce an image with associated depth data, such as an RGBZ image.
The present embodiments provide methods and systems to access additional, enhanced and/or interactive content associated with a broadcast program received over a closed broadcast network. Some embodiments provide methods of enhancing broadcast content by receiving broadcast content from a broadcast content source over a closed network, receiving a request to tune in a broadcast program, tuning in the broadcast program from the broadcast content, extracting a program identification of the broadcast program from the broadcast content, and communicating the program identification to a remote network access device to allow access over a network to additional content associated with the broadcast program.
A virtual conferencing system includes a 3D scanner in a local region and a camera. A scan of the local region and images are received and combined to make a model that is transmitted to a remote region. A remote model from the remote region is combined and rendered for a user in the local region. A reference point in the local region is mapped to a reference point in the remote region. The remote model is oriented with respect to the local region according to the reference points. Object in the remote and local regions may be filtered from models that are transmitted. Interactions with virtual objects in the local region may invoke modification virtual objects. Modifications may be transmitted to the remote region and superimposed on real objects corresponding to the virtual objects.
Embodiments of the present invention relate to audiovisual stream processing in videoconferences. For each audiovisual stream in a videoconference, a sound level of the audiovisual stream is detected. If the sound level exceeds a predefined threshold level, the audiovisual stream is processed with a first configuration. If the sound level is below the predefined threshold level, the audiovisual stream is processed with a second configuration. The second configuration is more resource-effective than the first configuration.
A video call center process and system can create video programs for television transmission from a multiplicity of simultaneous video callers with much less supporting staff.
A system and method for providing an image are provided. The image providing method includes: transmitting, to an external device, a first video image of a first resolution, which is converted from an original video image of an original resolution; receiving, from the external device, area information about an area of interest of the first video image of the first resolution; determining, based on the area information, an area corresponding to the area of interest, of the original video image of the original resolution, wherein the determined area is smaller than the original video image of the original resolution converting a part of the original video image of the original resolution to a second video image of the first resolution, wherein the part corresponds to the determined area; and transmitting the second video image to the external device.
In an embodiment, a method includes receiving video into a video display device. The method also includes storing, by at least one processor, the video into a memory, upon determining that the video display device is in a storage mode. Additionally, the method includes performing enhanced image processing on the video with the at least one processor, upon determining that the video display device is in an image processing mode.
Changes of a user's emotion that occurs when content is reproduced and a user's surrounding environment that occurs when the content is reproduced are recorded as sensing meta data and content is reproduced in a reproducing mode corresponding to the recorded sensing meta data. Content supplied from a content providing section 11 is normally reproduced. A human body sensor 24 measures biological information of a user of content. An environmental sensor 25 measures a user's surrounding environment. A sensing meta data generating section 19 generates sensing meta data using information detected by at least one of the human body sensor 24 and the environmental sensor 25. A recording processing section 20 records the generated sensing meta data to a record medium 21. A reproducing processing section 23 reproduces sensing meta data. A reproducing control section 12 reproduces content in a reproducing mode that changes corresponding to the reproduced sensing meta data.
A display apparatus is provided, which includes a receiver configured to receive a writing trace performed on a remote controller, a detector configured to extract a character that corresponds to the writing trace, a display configured to display the character and at least one item that corresponds to the character, and a controller configured to, if a user's operation is performed in one direction on the remote controller, automatically execute a function that corresponds to the at least one item that is positioned in the direction in which the user's operation is performed.
Disclosed herein is an image pickup circuit including: amplifying means for amplifying a charge corresponding to an amount of light received by a photodetector, and outputting a pixel signal; ramp signal generating means for generating a ramp signal whose voltage drops with a fixed slope from a predetermined initial voltage; and comparing means for comparing the pixel signal output by the amplifying means with the ramp signal output by the ramp signal generating means. A reference potential of the pixel signal output by the amplifying means and a reference potential of the ramp signal output by the ramp signal generating means are at a same level.
A stacked-type solid-state image sensor including a first semiconductor layer in which an imaging pixel portion is implemented, and a second semiconductor layer in which a digital signal processing unit is implemented, comprises a first timing control unit configured to generate a drive timing signal of the imaging pixel portion, an A/D converter configured to convert an analog signal output from each pixel of the imaging pixel portion into a digital signal, a second timing control unit configured to generate a drive timing signal of the A/D converter; and a status generation unit configured to receive an event signal generated by at least one of the first timing control unit and the second timing control unit and generate a status signal to restrict an operation of the digital signal processing unit.
An image sensor is provided. In one aspect, the image sensor includes a pixel coupled to an output line. The pixel includes a photodiode configured to generate electrical charges in response to light and a supply circuit configured to supply a voltage to the photodiode to keep a voltage of the photodiode at or above a threshold level in an integration time. In another aspect, the pixel includes a supply circuit configured to selectively supply voltage to the photodiode in a first charge holding capacity and a second charge holding capacity.
A camera device includes monochromatic and color image sensors that capture an image as a clear image in monochrome and as a Bayer image. The camera device implements image processing algorithms to produce an enhanced, high-resolution HDR color image. The Bayer image is demosaiced to generate an initial color image, and a disparity map is generated to establish correspondence between pixels of the initial color image and clear image. A mapped color image is generated to map the initial color image onto the clear image. A denoised clear image is applied as a guide image of a guided filter that filters the mapped color image to generate a filtered color image. The filtered color image and the denoised clear image are then fused to produce an enhanced, high-resolution HDR color image, and the disparity map and the mapped color image are updated based on the enhanced, high-resolution HDR color image.
A system and method for high dynamic range (HDR) imaging includes writing a first, second, and third sub-frame to a memory at a first, second, and third readout time, respectively, the first, second, and third sub-frame being generated by a same first sub-array of the array of image pixels. Subsequent to the third readout time, the first, second, and third sub-frames are sent to an image signal processor. Also subsequent to the third readout time, a fourth sub-frame is sent to the image sensor. The fourth sub-frame is generated by the same first sub-array of the array of image pixels. The fourth sub-frame bypasses the memory by being sent from an analog-to-digital converter to the image signal processor without being written to the memory.
Spatial resolution can be improved in multi-lens digital cameras. Each lens can have the same or similar field of view, but can be associated with different modulation transfer functions defining varying sharpness based on location within the field of view. The image information received from each lens can be combined to form an image based on the sharpness of the image information received from each lens.
A high definition video camera mounting system includes the camera fastened to a camera mount assembly via a central mounting post. The mounting assembly includes a first vibration dampening gasket, a second vibration dampening gasket, a mounting plate sandwiched between the first and second gaskets, and a backing plate disposed behind one of the gaskets. The mounting system allows a camera to capture HD video while mounted to a vehicle or aircraft without experiencing an unacceptable amount of wobble distortion effect. The mounting system can be fastened to an adjustable angle block.
Forward oblique blind spots of a vehicle, generated by the vehicle's front windshield pillars, are eliminated by provision of a panoramic windshield viewer system, thus allowing the driver to operate the vehicle without having his view impaired by visual obstructions that would otherwise be caused by the windshield pillars.
A location information designating device includes a location confirming image acquiring section, a display control section, an operating unit that designates a target location in the location confirming image displayed in the display; and a communicating unit. The location confirming image acquiring section acquires a location confirming image by which location information is confirmable. The display control section displays the acquired location confirming image in a display. The operating unit designates a target location in the location confirming image displayed in the display. The communicating unit transmits, to an external information device, information of the designated target location and the acquired location confirming image together with a request for an action to be performed by a user of the external information device.
The present invention concerns an apparatus comprising a shade, a camera sensor and a base. The camera sensor may be configured to capture video data of a surrounding environment of the apparatus. The base may be configured to enclose a circuit. The circuit may be configured to provide (i) an electrical connection to (a) the camera sensor and (b) components of the circuit, (ii) a connection between a power source and an external device, and (iii) control signals for activation of (a) the external device and (b) the components of the circuit. The circuit comprises an antenna module configured to connect and send data to a network through a wireless connection. The video data is sent as the data through the wireless connection. The camera sensor is positioned in a bottom part of the base that extends below the shade.
An eye-mountable device includes an image sensor situated in a polymeric material configured to be mounted to a surface of an eye. The image sensor can be disposed on a substrate at least partially embedded in the polymeric material. The image sensor can include a photo-sensitive area occupied by a plurality of photo-sensitive elements. The photo-sensitive area is illuminated by light entering a plurality of light channels. Each of the light channels has a respective orientation such that light passes through a given light channel from a respective direction. A given portion of the photo-sensitive elements therefore receives light from a respective direction corresponding to the one of the light channels that illuminates it. The direction-specific measurements of received light obtained by the multiple photo-sensitive elements can thereby be used to form an image.
A method for detecting the presence of a television signal embedded in a received signal including the television signal and noise is disclosed. Either first-order or second order cyclostationary property of the signals may be used for their detection. When the first-order cyclostationary property is used, the following method is used, the method comprising the steps of upsampling the received signal by a factor of N, performing a synchronous averaging of a set of M segments of the upsampled received signal, performing an autocorrelation of the signal; and detecting the presence of peaks in the output of the autocorrelation function. When the second order cyclostationary property of the signal is used, the method comprising the steps of delaying the received signal by a fixed delay (symbol time), multiplying the received signal with the delayed version, looking for a tone (single frequency) in the output.
An image composition apparatus according to the present invention comprising: an image acquiring section for acquiring first image data and second image data; a subtraction processing section for obtaining a difference value for each pixel for at least a part of the first image data and at least a part of the second image data; a filter processing section for applying filter processing based on a spatial frequency of an image to the difference value; and an image composition section for compositing at least a part of the first image data with at least a part of the second image data on the basis of an output of the filter processing.
An inkjet printer implements a method for identifying values for parameters for pixels to be printed by the printer. The method uses thresholds in a stochastic screen with a set of functions for the parameter for each primary color supplied to the printheads in the printer to identify values for the parameters. The parameters can be, for example, a number of drops to print for a color, a size of the drops to eject to form a pixel, or the number of inkjets to operate to form the pixel.
Various methods and devices display a sheet scanning order on a user interface. The sheet scanning order identifies a corresponding panel of a foldable media for each position in the sheet scanning order. The foldable media has multiple panels per side. The foldable media receives printing while unfolded, and the foldable media is folded into a three-dimensional shape after printing. These methods and devices scan sheets in the sheet scanning order to generate scanned images using a scanner. Also, such methods and devices automatically arrange and orient the scanned images to cause a printing engine to print the scanned images on corresponding panels according to the sheet scanning order (using a processor). Such methods and devices print the scanned images on corresponding panels of the foldable media according to the sheet scanning order, using the printing engine.
An image reading apparatus includes: a contact glass provided at an upper surface of a main body of the apparatus to set a manuscript thereon, an image sensor being positioned below the contact glass and having a reading surface on contact glass side for reading an image from the manuscript on the contact glass, a carriage supporting the image sensor accommodated in a sensor container formed to have a recess open to the contact glass side, a rail member slidably supporting the carriage, and a biasing member biasing the image sensor to the contact glass side via a biased portion adjacent to the reading surface of the image sensor. An upper end of the biasing member is positioned below the contact glass and above the lower surface of the image sensor.
The present invention provides an electronic device that includes: a main body; an information processing device housed in the main body, the front face of a housing of the information processing device being installed on the back side of a panel of the main body; and a duct that leads the external air of the main body to the information processing device. The information processing device includes a fan that takes the external air from the back face opposite from the front face into the inside and discharges the air taken in to the outside from the front face. The duct is an air passage that leads the air from the outside of the panel of the main body to the back face of the housing of the information processing device.
An image forming apparatus capable of communicating with the post-processing apparatus. The image forming apparatus includes an execution unit configured to execute a shift processing for shifting the image forming apparatus into a power saving state, a notification unit configured to notify the post-processing apparatus of an instruction to stop supply of power to the post-processing apparatus, and a power control unit configured to control the supply of power to the execution unit. The notification unit is configured, if the supply of power to the notification unit is stopped in a case where the execution unit is executing the shift processing, to control so that power is supplied to the notification unit. The notification unit supplied with power notifies the post-processing apparatus of the instruction.
An image forming apparatus includes an exit tray, an image forming section, a print controller, a user identification section, a fetch sensor, and a notification managing section. The image forming section performs printing on a sheet and ejects the printed sheet onto the exit tray. The print controller causes the image forming section to perform printing. The user identification section identifies the user and manages log-in and log-out status of the user. The fetch sensor detects whether or not the ejected printed sheet is fetched. The notification managing section changes, based on the user log-in or log-out status at completion of printed sheet ejection onto the exit tray and based on whether or not the printed sheet ejected onto the exit tray is fetched, a content of a notification that is to be issued to the user after completion of printed sheet ejection.
A control apparatus includes a setting unit that sets information on a print medium for a paper feed unit, a determination unit that, if the setting unit sets the information on the print medium, determines whether the set information on the print medium can be reflected in a setting condition for a specific mode, and an update unit that, if the determination unit determines that the set information on the print medium can be reflected, updates the setting condition for the specific mode to the information on the print medium.
Administering conferencing resources in a communications system comprising a plurality of user equipments and a server. A first user equipment transmits a first message to the server. The first message comprises a request for a resource configured for sustaining a conference call. The server allocates a network address identifying the resource and transmits a second message comprising the network address to the first user equipment.
A method and system for providing a service session using a call include: initiating a first call between a caller and a callee according to a callee address record; establishing a voice communication session during the call; modifying the caller address record; and initiating a second call between the caller and the callee according to the modified callee address record. A behavior of the second call differs from a behavior of the first call. In one embodiment, the callee address record is modified according to a modification request. In one embodiment, the callee address record includes at least one session initiation entry. The session initiation entry includes a session address attribute with information for establishing the communication session, a session communication method with a protocol used for the communication session, and a session data attribute with data information for sending over the communication session based on the session address attribute.
A system for optimized routing of interactions, comprising media servers, a statistics server, a routing database, and a routing server. Upon receiving or initiating an interaction, a media server sends a route request message to the routing server, the statistics server receives event notifications from the media servers and computes one or more statistics, and the routing server executes, using statistical data from the statistics server and data from the routing database, a routing script comprising a constraint-based optimization process in response to the route request message.
A dialer is configured to connect an agent to a call upon answer and present information to a computer workstation used by the agent as to whether the call was answered by a live person or an automatic call answering device (“ACAD”). An agent override timer is started allowing the agent to override the determination of whether a live person or ACAD answered the call. If an ACAD is reported to have answered the call and the agent does not provide an override indication or provides an override indication after the expiry of the agent override timer, then the agent may be disconnected from the call. If an agent override indication is received prior to the expiry of the agent override timer, then the agent is not disconnected from the call. This allows the agent to override an incorrect determination by the dialer as to an ACAD answering the call.
Aspects of the subject disclosure may include, for example, a method in which a device comprising a processor detects a communication session between a calling device and a called device, and receives a motion signal from the called device; the motion signal is generated at a motion sensor of the called device during or after the communication session. The device analyzes the motion signal to determine whether a portion of the motion signal corresponds to a preselected motion of the called device and whether a subsequent call from the calling device accordingly is to be blocked. Responsive to a determination that the subsequent call is to be blocked, the device also updates a list of blocked caller identifiers associated with the called device to add an identifier associated with the calling device. Other embodiments are disclosed.
In general, a computing device is described that receives an indication of a particular communication from a particular sender. The computing device determines a relationship score based at least in part on a relationship context between the particular sender and a user of the computing device. The relationship score indicates a degree of strength of a relationship between the particular sender and the user of the computing device. While outputting an alert indicative of the communication, the computing device adjusts one or more characteristics of the alert based at least in part on the relationship score.
The present disclosure relates to a method for prompting a calling request and a device for the same, which belong to the field of electronic technology. The method includes: receiving a calling request from a second terminal during a call session with a first terminal, the calling request carrying a communication identification of the second terminal; inquiring whether the first user information corresponding to the communication identification of the second terminal is in a contact list stored in local; and converting the first user information to corresponding first audio data through an audio transformation according to the first user information, and playing the first audio data during the call session.
A system, method and computer program product for adjusting a volume level of a phone for a detected hearing aid. The phone has a camera and a speaker. The field of vision of the camera and field of sound transmission of the speaker overlap. The computer program product includes a computer-readable storage device having computer-readable program instructions therein. The method and the instruction perform the following steps: detecting an ear image of a user in one or more pictures of the user taken from the camera in preparation for a phone call; detecting a hearing aid image in conjunction with the ear image; and causing a volume level of the speaker to be set for hearing aid performance as a result of detecting the hearing aid image in conjunction with the ear image.
Disclosed herein are a method and apparatus for displaying a message. Text messages that were sent and received to and from a recipient are obtained. The text messages are displayed such that group text messages sent and received to and from a group of recipients that also includes the recipient are differentiated from text messages sent or received to and from just the recipient.
A secure remote actuation system with a cloud-based network that performs a remotely-initiated operation is described herein. The system may comprise a remote input receptor and a network. The remote input receptor may comprise a user interface for receiving user inputs from a user. The network may comprise a combination of computer systems interconnected by telecommunications equipment or cables allowing information to be exchanged. The network may also comprise a network device for obtaining the user inputs from the remote input receptor. One or more acceptable inputs may be stored on the network. In the present invention, the network device obtains the user inputs from the remote input receptor while the user is using the user interface, compares the user inputs to the acceptable inputs, and performs an operation.
A wireless communication device for linking to an electronic device and including at least one antenna array and a control circuit is provided. The control circuit groups the at least one antenna array to obtain a plurality of test groups. In a scanning operation, the control circuit selects one of the test groups to be a specific test group. In a setting operation, the control circuit groups the specific test group, and re-obtains the plurality of test groups according to the grouped specific test group. The control circuit searches at least one optimal antenna for linking to the electronic device from the at least one antenna array through the scanning operation and the setting operation.
An accessory device having multiple speakers and/or microphones to perform a number of audio functions, for use with mobile devices, are provided. The audio transducers (e.g., microphones and/or speakers) may be housed in one or more extendable and/or rotationally adjustable arms. To compensate for the unwanted signal feedback between the speakers and microphones, acoustic echo cancellation may be implemented to determine the proper distance and relative location between the speakers and microphones. Acoustic echo cancellation removes the echo from voice communications to improve the quality of the sound. The removal of the unwanted signals captured by the microphones may be accomplished by characterizing the audio signal paths from the speakers to the microphones (speaker-to-microphone path distance profile), including the distance and relative location between the speakers and microphones. The optimal distance and relative location between the speakers and microphones is provided to the user to optimize performance.
An aspect provides an information handling device, comprising: a display; a processor; memory device storing instructions executable by the processor to operative couple the display to the processor; wherein the display, processor, and memory are located within a housing and the housing comprises a recess in which at least two members are housed. Other aspects are described and claimed.
A hosting provider may host a website at a first hosting location based on initial business information received from a hosting customer, perhaps while the hosting customer created an account. The initial business information may include, as non-limiting examples, whether the business is a local or non-localized business, business addresses and/or registered domain names. A domain name, particularly if it resolves to the website, may be analyzed for incorporated words, spelling, characters and/or top-level domain that may point to, or be more commonly used in, one or more geographical regions. The website may be moved to a second location based on the initial business information combined with subsequently collected business information, such as, as non-limiting examples, updated address information, marketing campaigns aimed at particular locations and/or based on the originating location of traffic to the website.
A method, a device, and a non-transitory storage medium having instructions to establish a connection with a sensor device; receive sensor data from the sensor device via the connection; convert the sensor data into common data of a common data format, wherein the common data includes metadata that supports an ontology; store the common data; and transmit the common data to a network device of a network.
A method and apparatus for distributing content via a communication network is presented. In one or more embodiments, the present invention comprises apparatus for receiving content from a server system. In one or more embodiments, the apparatus comprises a central processing unit, a video controller, a communications interface, and a memory comprising computer readable instructions for causing said apparatus to perform a variety of functions. In one or more embodiments, the computer readable instructions comprise instructions for causing the apparatus, upon connection to a power source and a communications source, to initiate a communications session with the server system. In one or more embodiments, the computer readable instructions comprise instructions to cause the apparatus to prompt a user of said apparatus to create an account at the server system.
Embodiments of the invention provide systems and methods for updating cache data on multiple servers without requiring a restart of those servers. More specifically, embodiments of the present invention provide an ability for an application to clear one or more cached tables when the table content has been modified. The cache can be refreshed across servers without impacting the active transactions of end users. So for example, during a business process such as the general ledger period close the system will no longer need a system restart to update cached period information.
A method of seamlessly scaling multiple network appliances in an appliance based network. The disclosed method allows a network to automatically utilize the resources of one or more additional appliances without performing extensive installation or calibration routines. In addition, the method includes assigning a new appliance a particular role and sub-role designation such that it is used in the most effective manner to serve the particular needs of the network in which the new appliance is being connected. The new appliance can be used as an expansion appliance to provide additional data storage capabilities, a mirroring appliance, which provides backup data storage capabilities, and/or a range extension appliance that extends the wireless communication range of the existing appliance.
An invitation service performs a series of transactions to enable P2P communication between two or more mobile data processing devices. Prior to attempting to establish a P2P network communication channel, the invitation service may first collect network information for each of the mobile devices and use the network information to determine if a direct P2P network communication channel is feasible. If a direct connection is feasible, then the invitation service provides for direct P2P communication, pushing the necessary network information to each of the mobile devices. If a direct connection is infeasible, or an attempted direct connection fails, then the invitation service may identify network information associated with a relay service. The network information may then be used by any pair of mobile devices to establish a connection through the relay service. The invitation service can perform its functions without maintaining per-connection state information for the mobile devices.
Systems and methods are used to enable creating, searching, and managing user-managed online pages (e.g., MAPpages) linked to locations on an interactive digital map. In one aspect, the method includes, at a server system: receiving, from a client, a request to create a new MAPpage; prompting the client to select a type for the new MAPpage; prompting the client to select a template for the new MAPpage; providing the template to the client for inputting one or more content elements for the new MAPpage; receiving, from the client, the one or more content elements for the new MAPpage; prompting the client to identify a physical location associated with the new MAPpage; prompting the client to identify contact information associated with the new MAPpage; creating the new MAPpage, wherein the new MAPpage is associated with the identified physical location, the identified contact information, the client, the type, and a timestamp.
Embodiments of the present invention include methods and systems for accelerated application startup. A method for accelerating startup of an application is provided. The method includes persistently storing a number of uniform resource locator (URL) hostnames based on one or more hostname requests made by one or more users during use of the application. The method further includes, upon startup of the application, making a DNS lookup call for at least one of the stored hostnames prior to a hostname request initiated by the application, wherein a resolution result for at least one of the stored hostnames is cached in the operating system DNS cache in preparation for the hostname request. A system for accelerating startup of an application is provided. The system includes a hostname storage device, a DNS pre-fetcher and a startup DNS pre-cacher.
An example implementation may involve a computing system receiving, from a media playback system, at least one request for an indication of one or more media items from a queue of media items. The implementation may also involve the computing system identifying one or more playback policies that are associated with the queue of media items. Each of the one or more playback policies may restrict at least one aspect of playback of at least one of the one or more media items. The implementation may further involve the computing system sending, to the media playback system, an indication of the identified one or more playback policies.
In an example embodiment, a gesture indication generated by a mobile device in response to a user gesture on a user interface of the mobile device with respect to a video currently being recorded by the mobile device is received. Availability notifications are then issued to the one or more potential visitors in the listing. A visit request is received from one of the one or more potential visitors, and then a host invitation is issued to the mobile device. In response to an indication that the user device has permitted the potential visitor corresponding to the visit request to view the video currently being recorded as a live video broadcast, the video currently being recorded is broadcast to the potential visitor corresponding to the visit request.
A computer system receives a first compressed media stream and stores corresponding data in a first compressed buffer. The computer system generates a first decompressed media stream based on the first compressed media stream. While providing the first decompressed media stream to a presentation device, the computer system receives a content-transition indication indicating that a second decompressed media stream is to be provided to the presentation device instead of the first decompressed media stream. While continuing to generate the first decompressed media stream using the first compressed buffer, the computer system receives a second compressed media stream corresponding to the second decompressed media stream and stores corresponding data in a second compressed buffer. After storing the data in the second compressed buffer, the computer system provides a second decompressed media stream, based on the second compressed media stream, to the presentation device instead the first decompressed media stream.
A network device is configured to receive information regarding a group of content streams and determine a buffer size for each of the content streams. The network device is further configured to receive the content streams from one or more encoding devices. The network device is further configured to buffer an amount of each of the content streams based on the respective buffer size. The network device is further configured to send a first content stream to a user device. The network device is further configured to determine that the first content stream has a quality of experience issue and send the second content stream to the user device.
A method includes in response to a request to stream media content from a base station of a wireless network to a communication device via a wireless channel, determining, at the base station of a wireless network, a size of a data burst that includes a portion of the media content based on potential data wastage, usage efficiency of base station resources, or a combination thereof. The method includes sending the data burst via the wireless channel from the base station to a communication device.
Various disclosed embodiments include methods and systems for constructing a multipoint control unit (MCU). The method includes generating an abstract multipoint control unit (MCU) process at an electronic device, the abstract MCU process comprising an identification of MCU resources for instantiating the abstract MCU process. The method includes transmitting, from the electronic device, the abstract MCU process to a server, and receiving, from the server in response to the transmitted abstract MCU process, a concrete MCU process at the electronic device, the concrete MCU process comprising the identified plurality of MCU resources.
A method includes providing a first party and a second party access to an integrated incubation environment (e.g., a multi-tenant system) residing on a server; storing, on the server, information relating to a collaborative project, wherein a first portion of the information is received from the first party, and a second portion of the information is received from the second party; and presenting the information to the first party and the second party over a network using at least one social network component.
The present invention is directed towards systems and methods for managing SSL session persistence and reuse in a multi-core system. A first core may indicate that an SSL session established by the first core is non-resumable. Responsive to the indication, the core may set an indicator at a location in memory accessible by each core of the multi-core system, the indicator indicating that the SSL session is non-resumable. A second core of the multi-core system may receive a request to reuse the SSL session. The request may include a session identifier of the SSL session. In addition, the session identifier may identify the first core as an establisher of the SSL session. The second core can identify from encoding of the session identifier whether the second core is not the establisher of the SSL session. Responsive to the identification, the second core may determine whether to resume the SSL session.
A computer system monitors a set of inactive addresses. The computer system identifies a suspicious activity associated with at least one inactive address of the set of inactive addresses. The computer system determines a suspicion score for the at least one inactive address based on the suspicious activity associated with the at least one inactive address. The computer system categorizes the at least one inactive address as a potentially hijacked address if the suspicion score exceeds a threshold.
A computer-implemented method for evaluating networks may include (1) identifying an initial set of recorded packet performance data that describes an instance of an attempt to establish a network connection path between an original node and a subsequent node in a network, (2) detecting, by a software security system, a network anomaly based on comparison data resulting from a comparison between the initial set of recorded packet performance data and an additional set of recorded packet performance data that describes another instance of an attempt to establish a network connection path between the original node and the subsequent node, and (3) performing, by the software security system, and in response to detecting the network anomaly based on the comparison between the sets of packet performance data, a security action to protect the computing device. Various other methods, systems, and computer-readable media are also disclosed.
Detecting DGA-based malware is disclosed. In an embodiment, a number of domain name server requests originating from a particular host among a plurality of hosts is determined. The number of domain name server requests are directed to one or more domain name servers. A number of internet protocol addresses contacted by the particular host is determined. Based on the number of domain name server requests and the number of internet protocol addresses contacted existence of malware on the particular host is determined.
Provided is adaptive authentication that utilizes relational analysis, sentiment analysis, or both relational analysis and sentiment analysis to facilitate an authentication procedure. The relational analysis evaluates a transactional profile and a behavioral profile of the user. The sentiment analysis evaluates available user information that is obtained from various forms of Internet activity related to the user. A level of authentication is selectively modified based on a result of the relational analysis and/or the sentiment analysis.
A computer-implemented method for controlling adaptive streaming media access includes requesting a first portion of media content from a content server and requesting authorization corresponding to a second portion of media content from an authorization server. The method further includes submitting evidence to the authorization server that the first portion of media content has been received by a client device and receiving a representation of authorization to access the second portion of media content in response to the evidence complying with a requirement. The method also includes requesting the second portion of media content from the content server, presenting the representation of authorization to the content server, and receiving the second portion of media content in response to the representation of authorization being accepted by the content server. The method can effectively control client behavior to prevent the client from skipping past required media content, such as a commercial advertisement.
According to this disclosure, a user is identified (and selectively granted access to protected resources) by using information that describes the user's interpersonal relationships. This information typically is stored in a datastore, such as a digital address book, an online profile page, or the like. The user's digital address book carries an “acquaintance pattern” that changes dynamically in time. This pattern comprises the information in the user's contact list entries. In this approach, the entropy inherent in this information is distilled into a unique acquaintance digest (or “fingerprint”) by normalizing the contact list data, and then applying a cryptographic function to the result.
Various embodiments are described that relate to a smart card. When not connected to an external system, such as a laptop computer, the smart card can be configured to power itself. Thus, various functions can be practiced on the smart card in absence of connection to the external system. Example functions of the smart card can include user identification and authorization. In addition, the smart card can be configured to distinguish between different users and provide different access levels to different users and/or difference access to containers resident within the smart card. This can be done prior to when the smart card is connected to the external system.
A system, apparatus, method, and machine readable medium are described for performing user authentication. For example, one embodiment of a system comprises: media capture logic implemented as a component within a browser executed on a client, the media capture logic configured to capture a user's voice from a microphone on a client or images of the user's face or other portion of the user's body from a camera on the client, the media capture logic exposing an application programming interface (API); and a web authentication application implemented as another component within the browser for communicating with an authentication server to perform biometric authentication of a user, the web authentication application making calls to the API of the media capture logic to capture raw biometric data comprising the user's voice from the microphone and/or images of the user's face or other portion of the user's body from the camera, the web authentication application to implement a biometric authentication process to authenticate the user with the raw biometric data.
Systems and methods for secure remote biometric authentication are provided. A network-based biometric authentication platform stores biometric templates for individuals which have been securely enrolled with the authentication platform. A plurality of sensor platforms separately establishes secure communications with the biometric authentication platform. The sensor platform can perform a biometric scan of an individual and generate a biometric authentication template. The sensor platform then requests biometric authentication of the individual by the biometric authentication platform via the established secure communications. The biometric authentication platform compares the generated biometric template to one or more of the enrolled biometric templates stored in memory at the biometric authentication platform. The result of the authentication is then communicated to the requesting sensor platform via the established secure communications.
Methods and apparatus are provided for improving resilience to forward clock attacks. A token generates a passcode from a user authentication token for presentation to an authentication server by detecting a forward clock attack; and communicating an indication of the forward clock attack to the authentication server. The generation of the user authentication passcodes is optionally suspended upon detecting the forward clock attack. The detection may be based on a comparison of a current device time of the token and a last used device time during a generation of a user authentication passcode.
Methods and systems for performing electronic transactions using dynamic password authentication involve, for example, sending, using a backend processor, a unique random or pseudorandom character string to the user's mobile device processor. Thereafter, also using the backend processor, a user identifier and a challenge string consisting at least in part of the user identifier and the random or pseudorandom character string encrypted with a unique encryption key may be received from the user's mobile device processor. Using the backend processor, a cipher input consisting at least in part of the user identifier and the random or pseudorandom character string is encrypted with the unique encryption key. The received encrypted challenge string is authenticated if the received encrypted challenge string matches the encrypted cipher input.
A method for generating one or more secrets for use by members. The method includes sending a first request for connection with a second member, and sending a second request to connection with a third member. The method further includes receiving, by the first member from the second member, a second input after the first request is sent and after communication is initiated between the first member and the second member and receiving, by the first member from the third member, a third input after the second request is sent and after communication is initiated between the first member and the third member. The method further includes generating, using an n-bit generator executing on the first member, a message digest using a first input, the second input, and the third input, extracting a secret from the message digest, and storing the secret in a secrets repository on the first member.
A comprehensive solution for providing secure mobile communication is provided. The system includes techniques for authentication and control of communication end-points; chain of trust to ensure devices are certified as authentic; contact list management; peer-to-peer encrypted voice, email, and texting communication; and a technique for bypassing an IP PBX to ensure high levels of security. The system is able to support use of commodity mobile communication devices (e.g., smart phones, laptops) over public carrier networks.
A technique is disclosed in which an MN (mobile node) 100 notifies, to a CN (correspondent node), home network connection information indicative of whether or not it is currently in connection with a home network which has allocated its own plurality of HoAs (home addresses), an address of each HA (home agent) and an ID of each HA in a state associated with the plurality of HoAs. Based on the information received from the MN, the CN grasps the home network with which the MN is currently in connection and makes an inquiry about the condition of the HA and sets an appropriate HoA, judged on the basis of the grasping result or the inquiry result, as a destination address of a packet to be transmitted to the MN.
An embodiment of the invention introduces a method for deploying clustered servers, executed by a processing unit of a DHCP (Dynamic Host Configuration Protocol) server, which contains at least the following steps. Deployment information associated with a requesting server is encapsulated into an acknowledgement after the DHCP server receives a request from the requesting server, where the request requests an IP (Internet Protocol) address, which has been assigned by the DHCP server. The acknowledgement is replied to the requesting server, thereby enabling the requesting server to configure itself as a master server or a slave server in a cloud computing environment according to the deployment information of the acknowledgement.
A control server (1) causes an analyzing section (15) to analyze (i) at least either of sensor information from a household sensor (10) and operation information on a household electric appliance and (ii) external information, and then originates a message to be directed to a user, the message being generated by a message generating section (16) in correspondence with the result of the analysis.
Systems and methods for clustering electronic messages are disclosed. In some implementations, a method includes, at a computing device, responsive to a determination that a message body of a first electronic message satisfies a set of content-based clustering rules associated with a first message cluster, assigning the electronic message to the message cluster. A cluster graphic is displayed for the message cluster. The cluster graphic is characterized by (a) a first state in which messages in the message cluster are individually depicted and (b) a second state, which replaces the first state upon user input and collectively represents a plurality of messages in the message cluster. Each message in the message cluster is either (i) addressed at least to a first recipient or (ii) originates from the first recipient.
Systems and methods provide a social productivity platform to create or modify documents and other data content objects using collaborative efforts, possibly where the efforts are received through a social networking service. The systems and methods can, for example, create, review and share documents, spreadsheets and presentations from any device, using any cloud storage provider. When teams of users collaboratively work on a document or other file, systems and methods connect each the team users to the document or file, and maintain a history buffer of comments, changes, or other events. The systems and methods enable a user to create, review, edit, or otherwise access content and capture information regarding changes implemented during individual or group-based editing to the content.
A method for receiving packet data at a communication channel and transmitting the packet data over serial links of the communication channel. The packet data is sliced into n-bit data portions which are concatenated with a header prior to transmitting an n-bit portion across one of the serial links of the communication channel. The header may include an invert bit to alter the majority sign of an n-bit portion. Other aspects of the present invention are also described herein.
A method is disclosed that is to be executed for supporting operator commands in a link aggregation group at a network device. The method starts with receiving a local operator command for changing aggregation port priority of the link aggregation group, where the local operator command contains operator command attributes including an operator command aggregation port prioritized list. The method continues with determining that the operator command aggregation port prioritized list is different from a remote aggregation port prioritized list used at the remote network device. The network device then transmits a set of operator command attributes associated with the local operator command to the remote network device and performs the local operator command by setting a local aggregation port prioritized list to be consistent with the operator command aggregation port prioritized list for the link aggregation group.
This invention includes an application server for executing an application and transmitting the execution results to a terminal or other such device connected to a network, and a management server for allocating the application and data on an application server and a storage device, respectively, wherein the management server reallocates the application execution site using: a procedure for obtaining device location information from a device via an application server and selecting, from the location information, an application server that will be the application migration destination; a procedure for indicating the migration-destination application server to the migration-source application server; and a procedure for migrating the application and the data between the application servers.
Congestion management for data traffic in a virtual domain identifies a congestion source and sends a message to the source to adjust data traffic rates. The source may be a virtual machine hosted by a physical server with one or more virtual servers incorporated. A congestion manager may identify the source and send the message to the source without affecting other data sources hosted by the physical server or the virtual servers. In some embodiments, information about the congestion source may be encapsulated in a packet payload readable only by the congestion source so only the congestion source receives the instruction to adjust the transmission rate.
A streams manager determines when congestion is happening or is predicted to happen in a streaming application, and in response, unfuses one or more operators in the streaming application from its processing element. The selection of which operators to unfuse in which processing elements is made using suitable unfuse criteria, which may include selecting operators that do not maintain state, selecting operators that have a threaded port or queue preceding the operator, selecting operators at natural boundaries, and inserting queues before operators to be unfused. Once one or more operators are unfused, the streams manager can take action to enhance performance of the unfused operator(s). For example, the streams manager can allocate additional resources to the unfused operators, can create clones of unfused operators that process tuples in parallel, can move one or more unfused operators to a public cloud, etc.
The invention relates to a method 30 in a packet forwarding device 2 in an Internet Protocol, IP, network 10 for congestion control. The method 30 comprises: receiving 31 an IP packet 20 originating from a first network node 11 and addressed to a second network node 3; determining 32 a congestion status on a network path from the second network node 13 to the first network node 11; and entering 33, for a congestion status indicating congestion, congestion information into a header 21, 22 of the IP packet 20, the congestion status congestion information notifying the second network node 13 about congestion present on the network path. The invention also relates to a packet forwarding device 12, a computer program 43 and computer program product 44.
In one embodiment, a method includes creating a logical router on a first router, the first router being supported on a first node, the logical router being created for a tenant. The method also includes determining whether a mode change is indicated, and migrating the logical router from the first router to the second router when it is determined that the mode change is indicated. The mode change is associated with migrating the logical router from the first router to a second router, where the second router is also supported on the first node.
A device receives network information associated with a network to be planned and including a multiple traffic requirements for the network, and identifies the multiple traffic requirements in the network information. The device allocates a first route in the network for a traffic requirement of the multiple traffic requirements, and determines that a second route for at least one other traffic requirement, of the multiple traffic requirements, is removed based on the route for the traffic requirement. The device allocates a third route in the network for the at least one other traffic requirement, and allocates additional routes in the network for remaining traffic requirements of the multiple traffic requirements. The device generates a network plan for the network based on the first route, the third route, and the additional routes allocated in the network, and outputs or stores the network plan.
The subject technology addresses the need in the art for improving utilization of network bandwidth in a multicast network environment. More specifically, the disclosed technology addresses the need in the art for extending multipathing to tenant multicast traffic in an IP overlay network, which enables the network to fully utilize available bandwidth for multicast traffic. In some examples, nodes in the overlay network may be connected by virtual or logical links, each of which corresponds to a path, perhaps through many physical links, in the underlying network.
According to one embodiment, a method for asymmetrical link aggregation includes detecting a link change corresponding to a previously selected port of a first set of ports used to forward frames to one of a plurality of aggregation switches connected via the first set of ports to an access switch. The method also includes re-selecting, using the access switch, a port of the first set of ports according to a distribution algorithm that ensures that all frames with a given source address are forwarded using a single port and causes frames with different source addresses to be distributed uniformly among the first set of ports in response to detecting the link change. Also, the method includes generating and sending a fake reverse address resolution protocol (RARP) frame including the given source address of the frame from the re-selected port in response to detecting the link change.
The present invention relates to a method and node arrangement for evaluating available conditions of a data path between a sending node and a destination node in a data communications network by means of an active measurement process comprising one or more measurement sessions. The data path and sending node comprises a sending node interface. The method involves performing a measurement session of said data path for determining a measurement result, and estimating one or more available conditions of a data path using the measurement result and one or more initial parameter values as input in a calculation algorithm. The method further comprises setting one initial parameter value for the calculation to a maximum bandwidth capacity based on the lowest bandwidth capacity value of the interfaces of both nodes sending said probe packet sequences during said measurement session.
Disclosed is a mobile terminal network port management method and device. The method includes: after PPPOE dial up completes, scanning current mobile network equipment port numbers and acquiring currently occupied mobile network ports; detecting and analyzing whether the currently occupied mobile network ports are virtually occupied ports or not; if yes, releasing said virtually occupied ports. The abovementioned technical solution solves an existing problem of possible virtual occupancy of network ports after a PPPOE connection is established, thereby greatly enhancing availability of the mobile terminal and improving the user experience on the terminal.
Systems and methods of interconnecting devices may include an input/output (IO) interface having one or more device-side data lanes and transceiver logic to receive a bandwidth configuration command. The transceiver logic may also configure a transmit bandwidth of the one or more device-side data lanes based on the bandwidth configuration command. Additionally, the transceiver logic can configure a receive bandwidth of the one or more device-side data lanes based on the bandwidth configuration command.
Techniques are described for managing communications for a managed virtual computer network overlaid on a distinct substrate computer network. The techniques may be used in situations in which a configurable network service provides managed virtual computer networks for clients and also provides one or more network-accessible services that are available to the managed virtual computer networks, with particular managed virtual computer networks being configured to provide local private access to at least one of the provided network-accessible services, despite those provided network-accessible services being located externally to the particular managed virtual computer networks. In some situations, a Lightweight Directory Access Protocol (“LDAP”) network-accessible service is provided, and a logical endpoint for the LDAP service is created within a managed virtual computer network to enable the multiple computing nodes of the managed virtual computer network to communicate with one or more LDAP computer servers from the LDAP service.
A method is described for transmitting a multimedia stream from a first terminal and receiving an associated second multimedia stream at a second terminal. The first and second terminal are connected to at least one gateway for enabling the transmission of the stream and the receiving of the associated stream. The method comprises: —initiating the exchange of first multimedia session information between the first terminal and the gateway, using a first protocol; —providing a trigger to the second terminal to initiate the exchange of second multimedia session information between the second terminal and the gateway, using a second protocol; —in response to providing the trigger, the second terminal initiating the exchange of second multimedia session information between the second terminal and the gateway, using a third protocol; —transmitting a first multimedia stream from the first terminal and receiving a second associated multimedia stream at the second terminal.
A method of transmitting information between a plurality of radioelectric stations and an associated transmission network are disclosed. In one aspect, the method transmits information between radioelectric stations, each station including a transmitter and a receiver, the information including NbMot words of data, NbMot being an integer >1. The transmission method includes: determining at least one polynomial of degree NbMot−1, each of the NbMot coefficients of the polynomial corresponding to a respective word, the polynomial having an indeterminacy, calculating NbRepet polynomial values for the polynomial, NbRepet being an integer >1, each polynomial value being calculated for a respective predetermined value of the indeterminacy, transmitting the calculated polynomial values from one radioelectric station to at least one other radioelectric station, receiving polynomial values by the other radioelectric station, and determining, via the other radioelectric station, the NbMot words from a Lagrange interpolation of the received polynomial values.
A modulating system (14) adapted to generate a multi-level quadrature amplitude modulation, includes: a first number of first optical channels (24_1), each of the first optical channels (24_1) including a modulating device (28), and a second number of first optical channels (24_1) each including a first phase shifting unit capable of introducing a phase shift of π, and a first number of second optical channels (24_2), each of the second optical channels (24_2) being associated bijectively with one of the first optical channels (24_1), each of the second optical channels (24_2) including the same elements as the first optical channel (24_1) with which the second optical channel (24_2) is associated and a second phase shifting unit able to introduce a phase shift of π/2.
An analog delay cell is provided that includes a transconductance-capacitance stage and an inductive transimpedance amplifier stage that provides an all-pass transfer function. In another embodiment, an adaptive analog delay cell including a transconductance (gm) plus capacitance (C) stage and an inductive-capacitance transimpedance amplifier (TIA) stage with digitally programmable phase-shift is provided. The adaptive analog delay cell increases the phase-shift by incorporating an LC network in the feedback path of the transimpedance stage. The disclosed analog delay cells can be used to provide delays in a tapped delay line. Also, the disclosed analog delay cells may be used to perform the multiplier and summation functions of a tapped delay line in addition to providing the delays. In another embodiment, the transimpedance amplifier stage includes an inductive-capacitive transimpedance amplifier stage.
In various embodiments, techniques are provided to determine channel characteristics of various communication systems such as OFDM systems or systems using a plurality of transmit antennas by using various sets of training symbols that produce zero cross-correlation energy. Channel communication can accordingly be simplified as the zero cross-correlation property allows for channel estimation without a matrix inversion.
A method for associating signal sources and paths includes determining secondary paths of a signal received at a reception point, wherein the signal reflects off one or more reflective surfaces before being received at the reception point, determining mirror sources of the secondary paths in accordance with locations of the one or more reflective surfaces and a main source of the signal, determining associations between the secondary paths and the mirror sources based on cross points at which the signal reflected off the one or more reflective surfaces, thereby obtaining path-source associations, and instructing use of the path-source associations in multi-source channel estimation.
Providing information about digital certificate validity includes ascertaining digital certificate validity status for each of a plurality of digital certificates in a set of digital certificates, generating a plurality of artificially pre-computed messages about the validity status of at least a subset of the set of digital certificate of the plurality of digital certificates, where at least one of the messages indicates validity status of more than one digital certificate and digitally signing the artificially pre-computed messages to provide OCSP format responses that respond to OCSP queries about specific digital certificates in the set of digital certificates, where at least one digital signature is used in connection with an OCSP format response for more than one digital certificate. Generating and digitally signing may occur prior to any OCSP queries that are answered by any of the OCSP format responses. Ascertaining digital certificate validity status may include obtaining authenticated information about digital certificates.
The systems, methods and apparatuses described herein provide a computing environment that includes secure time management. An apparatus according to the present disclosure may comprise a non-volatile storage to store a synchronization time and a processor. The processor may be configured to generate a request for a current time, transmit the request to a trusted timekeeper, receive a digitally signed response containing a current, real-world time from the trusted timekeeper, verify the digital signature of the response, verify that the response is received within a predefined time, compare a nonce in the request to a nonce in the response, determine that the current, real-world time received from the trusted timekeeper is within a range of a current time calculated at the apparatus and update the synchronization time with the current, real-world time in the response.
An apparatus, a system and a method for securing sensor data by a security engine circuitry of a system on chip (SoC). For example, the security engine may receive from a processor circuitry of the SoC an inter processor communication (IPC) request to secure sensor data, and may send to an integrated sensor hub (ISH) of the SoC an IPC request to receive sensor data. The ISH may collect sensor data from one or more internal and/or external sensors, and may send the collected sensor data to the security engine. The security engine may receive the collected sensor data from the ISH, may secure the collected sensor data, and may send secured sensor data to the processor circuitry.
The present invention relates to a method for coding a first data stream and a method for decoding a second data stream wherein the coding is the result of comparing the first data stream with a third data stream formed by a pseudorandom sequence by means of an exclusive comparison operation (XOR). Specifically, the invention relates to the methods based on hyperchaotic coding methods for generating the pseudorandom sequences used in coding and decoding.
A mobile secret communications method based on a quantum key distribution network, comprises the following steps: a mobile terminal registering to access the network and establishing a binding relationship with a certain centralized control station in the quantum key distribution network; after a communication service is initiated, the mobile terminals participating in the current communication applying for service keys from the quantum key distribution network; the quantum key distribution network obtaining addresses of the centralized control stations participating in service key distribution during the current communication, designating a service key generation centralized control station according to a current state indicator of each centralized control station; the service key generation centralized control station generating service keys required in the current communication and distributing the keys to the mobile terminals participating in the current communication.
A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers.
Disclosed herein are methods and systems for uplink control feedback design in relation to the high speed dedicated physical control channel (HS-DPCCH). First uplink data may be transmitted on a HS-DPCCH to a first serving cell and a second serving cell, where the first serving cell may be used as a timing reference cell for the uplink transmission. The first serving cell may be associated with a first NodeB and the second serving cell may be associated with a second NodeB. First downlink data may be received from the first serving cell and second downlink data may be received from the second serving cell. A timing reference for uplink transmission may be changed such that the second serving cell may be used as the timing reference cell. Second uplink data may be transmitted on the HS-DPCCH using the second serving cell as the timing reference cell.
The present invention discloses a method for a terminal receiving a downlink signal on a predetermined subframe in a wireless communication system. More specifically, the method comprises the steps of: receiving an enhanced physical downlink control channel (EPDCCH) from a base station; and receiving a physical downlink shared channel (PDSCH) from the base station, on the basis of the EPDCCH, wherein the EPDCCH is assumed not to be mapped onto a resource block (RB) of a symbol for receiving a physical control format indicator channel (PCFICH) or a physical hybrid-ARQ indicator channel (PHICH), when the PCFICH or the PHICH is received by the predetermined subframe.
Methods described herein are for wireless communication systems. One aspect of the invention is directed to a method for a HARQ process, in which the HARQ process includes a first transmission of an encoder packet and at least one retransmission. The method involves allocating a transmission resource for each respective transmission. The method involves transmitting control information from a base station to a mobile station for each respective transmission. The control information includes information to uniquely identify the HARQ process and an identification of one of a time resource, a frequency resource and a time and frequency resource that is allocated for the transmission. In some embodiments of the invention, specific control information is signalled from a base station to a mobile station to enable RAS-HARQ operation. In some embodiments of the invention, retransmission signaling in included as part of regular unicast signaling used for both first transmission and retransmissions. In some embodiments of the invention, a 3-state acknowledgement channel and associated error recovery operation enables the base station and mobile station to recover from control signaling error and reduce packet loss.
The present invention relates to a wireless communication system and a user equipment (UE) providing wireless communication services, and more particularly, a method of preventing transmission error of data while maintaining its security and a method of controlling an access of a Relay Node (RN) to a Donor eNB (DeNB) and an access of the UE to the RN during a process of transmitting and receiving user data when the RN as a radio network node is connected to the DeNB in an Evolved Universal Mobile Telecommunications System (E-UMTS), a Long Term Evolution (LTE) system, and a LTE-Advanced (LTE-A) system that have evolved from a Universal Mobile Telecommunications System (UMTS).
A method of wavelength conversion without polarization tracking is provided. A system is also provided that converts an input signal into an output signal of a different wavelength that contains all of the amplitude, phase, and polarization information of the original signal. The method includes separating, using a polarization-diversity optical mixer, an input optical signal of a first wavelength into a plurality of electrical signals containing amplitudes and phases while maintaining the polarization information of the input signal, converting each of the amplitudes and phases into individual photo-currents using a photo-diode, converting each of the output photo-currents into voltages using an amplifier, modulating the multitude of voltages to a second wavelength using a modulator, where the separated electrical signals are up-converted to generate an output optical signal that maintains the same amplitude, phase, and polarization information as was contained in the input signal.
A method, device, computer-readable storage medium, and system for determining key performance indicators of a wireless RF signal received by an antenna from a signal source. A diagnostic device may receive signal of a carrier network from a primary antenna. The diagnostic device may transmit the signal to a mobile device that is registered on the carrier network. A mobile device may receive the signal from the diagnostic device, demodulate the signal, and determine key performance indicators of the signal. The key performance indicators may be displayed in real-time. This allows a technician to orient the primary antenna so that it receives a signal from the signal source with the highest quality key performance indicators it can receive.
In some aspects, a radio-frequency (RF) camera system includes a sensor assembly and a data processing system. The sensor assembly includes sensors supported at respective sensor locations. Each sensor is supported at one of the sensor locations and configured to detect RF signals from a field of view defined by the sensor assembly. Each sensor is configured to identify parameters of the RF signals detected by the sensor. The data processing system is configured to receive the parameters identified by the sensors and generate a graphical representation of the field of view based on the parameters.
An adaptive antenna system for mobile applications where the mode of the antenna is optimized dynamically to optimize link quality with intended sources. Interfering signals are suppressed by mode selection to minimize link quality by altering antenna radiation pattern characteristics. A single driven antenna is configured such that the radiating mode can be dynamically adjusted and optimized based on link metrics.
A signal reception processing apparatus includes a digital signal processing unit that calculates a first Q value based on distribution of the symbols of the demodulated signal and distance between the symbols of the demodulated signal, and an error correction unit that outputs corrected signal as a demodulation electric signal, and calculates a second Q value based on an error rate at the time of the correction, and a control unit that calculates a penalty that indicates degradation quantity of signal quality caused by a nonlinear optical effect of an optical fiber based on the first Q value and the second Q value.
A method and apparatus for characterizing and compensating optical impairments in an optical transmitter includes operating an optical transmitter comprising a first and second parent MZ, each comprising a plurality of child MZ modulators that are biased at respective initial operating points. An electro-optic RF transfer function is generated for each of the plurality of child MZ modulators. Curve fitting parameters are determined for each of the plurality of electro-optic RF transfer functions and operating points of each child MZ modulator are determined using the curve fitting parameters. An IQ power imbalance is determined using the curve fitting parameters. Initial RF drive power levels are determined that compensate for the determined IQ power imbalance. The XY power imbalance is determined for initial RF drive power levels using the curve fitting parameters. The operating RF drive powers are determined that at least partially compensate for the first and second IQ power imbalances and for the XY power imbalance for the optical transmitter.
An optical receiver includes a dividing unit, a control unit, and a compensating unit. The dividing unit divides an optical transmission signal into a plurality of frequency components by a set number of divisions and a set division bandwidth. The control unit controls the number of divisions and the division bandwidth on the basis of transmission path information about an optical transmission line through which the optical transmission signal is transmitted and signal information about the optical transmission signal. The compensating unit compensates optical nonlinear distortion of each of the frequency components divided by the dividing unit.
A high-speed signal generator. A digital signal processing (DSP) block generates a set of N (where N is an integer and N≧2) parallel digital sub-band signals, each digital sub-band signal having frequency components within a spectral range between 0 Hz and ±Fs/2. A respective Digital-to-Analog Converter (DAC) processes each digital sub-band signal to generate a corresponding analog sub-band signal, each DAC having a sample rate of Fs. A combiner combines the analog sub-band signals to generate an output analog signal having frequency components within a spectral range between 0 Hz and ±NFs/2.
A first optical transceiver node comprises: a laser configured to emit an input optical signal; a first splitter coupled to the laser and configured to split the input optical signal into a local oscillator (LO) optical signal and an unmodulated optical signal; and a receiver coupled to the first splitter and configured to: receive the LO optical signal from the first splitter; receive a modulated optical signal from a second optical transceiver node, wherein the modulated optical signal is a modulated version of the unmodulated optical signal; and perform phase noise cancellation of the modulated optical signal using the LO optical signal.
Embodiments of the present disclosure provide an estimation apparatus and method for nonlinear distortion and a receiver. The estimation method for nonlinear distortion includes: sampling a band-limited analog signal to obtain a sampling sequence; calculating a nonlinear perturbation coefficient in nonlinear distortion estimation based on a Nyquist pulse; calculating a nonlinear perturbation term superimposed on a signal by using the nonlinear perturbation coefficient and the sampling sequence; and calculating a nonlinear distortion waveform by using the nonlinear perturbation term. With the embodiments of the present disclosure, not only any modulation formats are compatible, but also advantages of high precision and good adaptability may be achieved.
Embodiments include a dynamic wireless aerial mesh network having aerial nodes that provides real-time persistent wide area communications service to provide communications in response to an incident. Typically, the area services is a wide area that is physically inaccessible via ground transportation. In addition, embodiments include the formation of a decentralized mesh supernetwork comprising two or more dynamic wireless aerial mesh networks where each dynamic wireless aerial mesh network is owned by a different agency (e.g., a secure community). A member of a first dynamic wireless aerial mesh network may send a request to a member of a second dynamic wireless aerial mesh network for the first dynamic wireless aerial mesh network to join the second dynamic wireless aerial mesh network to form a mesh supernetwork, and receive an acceptance from the member of the second dynamic wireless aerial mesh network.
In a wireless communication system having an antenna array selectively configured to transmit channel state information reference signals (CSI-RS) using a plurality of antenna ports and basis beam vectors selected from a master beam set or retrieved from memory, a codebook enables selection of a linear combination of at least a subset of the beams and co-phases and coefficients for each selected beam, where the co-phases determine the co-phasing weights for the selected beams for a cross-polarized antenna array, and the coefficients determine the linear combination of the selected beams. Feedback contains an indication of channel state information (CSI) for the set of selected or retrieved basis beam vectors, the selected beams, co-phases, and coefficients. The CSI includes at least precoding matrix information (PMI) corresponding to a precoding vector based on a set of the basis beam vectors for the selected beams, corresponding co-phases, and corresponding coefficients.
System and method for enabling communications via a power line conveying DC power from multiple DC power sources such as solar panels. Power and communications are provided using a single combined power and communications line. Data communication signals received over the power line are detected and compared against power line voltage for processing received data and generating data for transmission. Remote units are self-powered using power harvesting of the data communication signals.
An accessory device is provided that covers an electronic device. The accessory device includes a plurality of members which are connected to each other to be pivoted with respect to each other. The plurality of members may be pivoted to maintain a viewing angle of the electronic device on a surface.
This disclosure provides a microwave radio transmitter apparatus comprising an antenna arrangement and a precoder module connected to the antenna arrangement. The precoder module comprises an estimation module. The precoder module is configured to receive a number N of signals s1, . . . , sN and to generate N phase-adjusted transmit signals TX1, . . . , TXN. The antenna arrangement comprises N antenna elements ai, i=1, 2, . . . , N. Each antenna element ai is configured to obtain a respective phase-adjusted transmit signal TXi from the pre-coder and to transmit the respective phase-adjusted transmit signal TXi. The precoder module is configured to obtain an observation receive signal RX, the observation receive signal comprising signals transmitted from the N antenna elements. The estimation module is configured to estimate for each antenna element ai a phase difference between the corresponding transmit signal TXi and the observation receive signal RX. The precoder module is configured to adjust each transmit signal based on the estimated phase difference.
A vehicle may include a plurality of antennas each associated with a different radio frequency; and a modem including a radio-frequency transceiver and an antenna control processor configured to selectively connect a selected one or more of the plurality of antennas having a radio frequency matching at least one frequency associated with a desired service provider to the transceiver. The vehicle may also determine whether a service-provider-recommended alternate frequency is available, responsive to service provider signal strength being below a predefined signal strength; and if so, direct the modem to switch to an antenna associated with the alternate frequency, and otherwise, cycle to a next available antenna frequency.
A module includes: a first duplexer including a common terminal coupled to a first terminal of a diplexer, the diplexer including an antenna terminal coupled to an antenna, the first terminal, and a second terminal; and a second duplexer including a common terminal coupled to the second terminal of the diplexer and having a passband different from a passband of the first duplexer, wherein a frequency at which a reactance component of an impedance is approximately zero and the impedance is less than a reference impedance is not located in a passband of the first duplexer, the impedance being an impedance when the second duplexer is viewed from a node at which the antenna terminal is divided into the first terminal and the second terminal in the diplexer.
A storage device disclosed herein includes a memory and a write channel configured to interleave a plurality of code-words to generate a plurality of multiplet sequences such that at least two of the plurality of code-words interleave to the end of the interleaving process. In one example implementation, for each of the multiplet sequences no two successive multiplets are from the same code-word, a multiplet including a plurality of bits from a single code-word.
Methods and apparatus are provided for explicit updates for symbol probabilities of an entropy encoder or decoder. An apparatus includes a video encoder having an entropy encoder for encoding symbols for picture data for at least a portion of a picture. An explicit update function is used to update probabilities of the symbols processed by the entropy encoder. The explicit update function at least one of is truncated at a threshold value and has a varying rate of adaptation.
This disclosure relates to compressing and/or decompressing a group of similar data units, such as a table or queue of data units processed by a networking device or other computing apparatus. Each data unit in the group may only have values for fields in a master set. The described systems are particularly suited for hardware-level processing of groups of sparsely-populated data units, in which a large number of the data units have values for only a small number of the fields. In an embodiment, non-value carrying fields in a data unit are compressed based on a compression profile selected for the data unit. The compression profile indicates, for each master field, whether the compressed data unit includes a value for that field. Non-value carrying fields are omitted from the compressed data unit. The compression profile also permits compression of value-carrying fields using variable-width field lengths specified in the profile.
An AD converter converts an analogue input voltage into a digital value including a most significant bit to a least significant bit. The AD converter includes: a common node; a capacitive DAC; a comparator; a successive approximation controller; and an integrator. The integrator includes first to Xth integrating circuits connected in a cascade arrangement, where X is an integer greater than or equal to two, and at least one feedforward path that each samples a residual voltage and outputs the sampled residual voltage to one of the second to Xth integrating circuits.
Analog-to-digital converters (ADCs) can have errors which can affect their performance. To improve the performance, many techniques have been used to compensate or correct for the errors. When the ADCs are being implemented with sub-micron technology, ADCs can be readily and easily equipped with an on-chip microprocessor for performing a variety of digital functions. The on-chip microprocessor and any suitable digital circuitry can implement functions for reducing those errors, enabling certain undesirable artifacts to be reduced, and providing a flexible platform for a highly configurable ADC. The on-chip microprocessor is particularly useful for a randomized time-interleaved ADC. Moreover, a randomly sampling ADC can be added in parallel to a main ADC for calibration purposes. Furthermore, the overall system can include an efficient implementation for correcting errors in an ADC.
Provided are, among other things, systems, methods and techniques for converting a continuous-time, continuously variable signal into a sampled and quantized signal. According to one implementation, an apparatus includes multiple processing branches, each including: a bandpass noise-shaping circuit, a sampling/quantization circuit, and a digital bandpass filter. A combining circuit then combines signals at the processing branch outputs into a final output signal. The bandpass noise-shaping circuits include adjustable circuit components for changing their quantization-noise frequency-response minimum, and the digital bandpass filters include adjustable parameters for changing their frequency passbands.
A method for adaptively regulating a coding mode and a digital correction circuit thereof are provided. The method is for a successive-approximation-register analog-to-digital converter (SAR ADC). In the method, whether to regulate a binary weight corresponding to each of digital bits is determined according to the number of completed comparison cycles to provide a first coding sequence. The first coding sequence is directly compensated according to uncompleted comparison cycles to provide a correct digital output code.
Systems comprising: a first MDAC stage comprising: a sub-ADC that outputs a value based on an input signal; at least two reference capacitors that are charged to a Vref; at least two sampling capacitors that are charged to a Vin; and a plurality of switches that couple the at least two reference capacitors so that they are charged during a sampling phase, that couple the at least two sampling capacitors so that they are charged during the sampling phase, that couple at least one of the reference capacitors so that it is parallel to one of the at least two sampling capacitors during a hold phase, and that couple the other of the at least two sampling capacitors so that it couples the at least one of the reference capacitors and the one of the at least two sampling capacitors to a reference capacitor of a second MDAC stage.
An integrated circuit apparatus for calibrating a phase locked loop (PLL) circuit that includes a phase comparator configured to receive a reference clock signal and a feedback clock signal and generate a phase error signal, a variable frequency oscillator configured for receiving the phase error signal and generating a corresponding fast clock signal at an output of the variable frequency oscillator, and a divider that is configured to divide the fast clock signal by a divisor (N) so as to generate the feedback clock signal, includes a calibration circuit. The calibration circuit is coupled to receive the reference clock signal and the fast clock signal and to provide a frequency band selection signal to the variable frequency oscillator. The calibration circuit includes a counting circuit for counting a number of cycles of the fast clock signal over a period of time defined by a number of cycles (M) of the reference clock signal. The calibration circuit also includes a selection block for performing a convergence test using the counted number of fast clock cycles, N, and M. The selection block generates the frequency band selection signal in accordance with the results of the convergence test to select a next candidate calibrated frequency band.
A method includes generating a first signal based on a difference between a first frequency of a first voltage controlled oscillator (VCO) and a second frequency of a second VCO. The method further includes determining a gain of the first VCO at least partially based on the first signal.
A phase-rotating phase locked loop (PLL) may include first and second loops that share a loop filter and a voltage controlled oscillator in order to perform the operation of a phase-rotating PLL, the first and second loops configured to activate in response to an enable signal. The PLL may further include a phase frequency detection controller configured to provide the enable signal to the first and second loops in response to a transition of a coarse signal that may be applied as a digital code.
An integrated circuit device implementing a digital phase-locked loop includes a measure period component, an averager component, a generator component, and a compensator component. In the digital phase-locked loop implementation, phase compensation and frequency compensation are separated from one another.
A clock generator has a multi-phase controllable oscillator. The multi-phase controllable oscillator includes oscillator core circuits, and has phase nodes at which clock signals with different phases are generated, respectively. Each oscillator core circuit includes a resistive component and an inverter. The resistive component is coupled between a first phase node and a second phase node of the multi-phase controllable oscillator, wherein clock signals generated at the first phase node and the second phase node have adjacent phases. The resistive components of the oscillator core circuits are cascaded in a ring configuration. The inverter receives an input feedback clock signal from one phase node of the multi-phase controllable oscillator, and generates an output feedback clock signal to the second phase node according to the input feedback clock signal.
Hardened programmable logic devices are provided with programmable circuitry. The programmable circuitry may be hardwired to implement a custom logic circuit. Generic fabrication masks may be used to form the programmable circuitry and may be used in manufacturing a product family of hardened programmable logic devices, each of which may implement a different custom logic circuit. Custom fabrication masks may be used to hardwire the programmable circuitry to implement a specific custom logic circuit. The programmable circuitry may be hardwired in such a way that signal timing characteristics of a hardened programmable logic device that implements a custom logic circuit may match the signal timing characteristics of a programmable logic device that implements the same custom logic circuit using configuration data.
A signal reception circuit according to an aspect of the present disclosure includes: an input terminal; an input reference terminal; an output terminal; an output reference terminal; a normally-on type transistor that includes a first terminal connected to the output terminal, a second terminal connected to the output reference terminal, and a control terminal; a first detector circuit that detects an input signal applied between the input terminal and the input reference terminal, to apply an output signal between the output terminal and the output reference terminal; and a second detector circuit that detects the input signal, to apply a negative voltage pulse to the control terminal of the transistor with the output reference terminal as a reference.
A method is used to control an electronic device that includes a switching unit having a main MOS transistor having a substrate, a first conducting electrode and a second conducting electrode coupled to an output terminal. The method includes controlling the main transistor in such a way as to put it into an on state or an off state such that, when the main transistor is in the on state, the substrate and the first conducting electrode of the main transistor are connected to an input terminal and, when the main transistor is in the off state, the first conducting electrode of the main transistor is isolated from the input terminal and a first bias voltage is applied to the first conducting electrode and a second bias voltage is applied to the substrate of the main transistor.
An audio encoding device and an audio decoding device are described herein. The audio encoding device may examine a set of audio channels/channel groups representing a piece of sound program content and produce a set of ducking values to associate with one of the channels/channel groups. During playback of the piece of sound program content, the ducking values may be applied to all other channels/channel groups. Application of these ducking values may cause (1) the reduction in dynamic range of ducked channels/channel groups and/or (2) movement of channels/channel groups in the sound field. This ducking may improve intelligibility of audio in the non-ducked channel/channel group. For instance, a narration channel/channel group may be more clearly heard by listeners through the use of selective ducking of other channels/channel groups during playback.
Embodiments are provided for controlling playback volumes of a group of one or more playback zones in a network media system via a user interface provided on a touch screen display. For instance, touch inputs may be provided to the user interface via the touch screen to move a volume indicator along a graphical representation of a volume scale on the user interface to adjust a particular playback volume level of a playback zone or the group of the one or more playback zones. Further, touch inputs such as a dwell touch input or a swipe touch input may be configured to cause the particular playback volume level to be applied to other playback zones in the network media system, such that each playback zone the playback volume level is applied to has a respective playback volume level matching, or substantially matching the particular playback volume level.
A digital amplitude modulation device includes power amplifiers, a compositor, a filter, a measurement unit, a protection unit, and a controller. The power amplifiers are arranged in parallel and amplify an input signal in accordance with ON control and stop output in accordance with OFF control. The filter suppresses an unnecessary component to generate an AM signal. The measurement unit measures a measurement value between the filter and a signal output terminal and output the AM signal generated by the filter. The protection unit includes a calculator and a first processing unit. The calculator is formed from an analog circuit and calculates an evaluation value based on the measurement value. The first processing unit is formed from an analog circuit and generates a first control signal by referring to the evaluation value. Upon receiving the first control signal, the controller OFF-controls the power amplifiers.
Embodiments generally relate to a conversion arrangement, a driver arrangement, and a method of producing a complementary complementary metal-oxide-semiconductor (CMOS) output signal for driving a modulator device. The conversion arrangement includes a differential amplifier configured to produce a first amplified signal based on the differential input signal, and at least two transimpedance amplifiers (TIAs) coupled with respective outputs of the differential amplifier and configured to produce a second amplified signal based on the first amplified signal. Respective bias voltages for the TIAs are based on the first amplified signal. The conversion arrangement further includes a common-mode feedback arrangement coupled with outputs of the TIAs and configured to control the first amplified signal based on the second amplified signal, thereby controlling the bias voltages, wherein the complementary CMOS output signal is based on the second amplified signal.
Provided is a Digital Pre-Distortion (DPD) apparatus and method for processing a signal that is input to a power amplifier in a wireless communication system. The DPD apparatus includes a DPD unit configured to pre-distort an input signal that is input to the power amplifier, using DPD information; and a signal processor configured to capture signals for estimation of the DPD information from each of an input terminal and an output terminal of the power amplifier, detect peak signals of the captured signals, separate the detected peak signals into a plurality of intervals depending on a power level, separately store the detected peak signals, estimate the DPD information using the peak signals stored for each interval, and provide the estimated DPD information to the DPD unit.
A power tool includes a housing, an electric motor mounted in the housing, and a switching device for reversing rotation direction of the motor. The switching device includes an actuator slidably secured to the housing and movable between first and second positions. The actuator includes a magnet. A first ferromagnetic member is attached to a first housing section so as to be within range of attraction force of the magnet when the actuator is in the first position and a second ferromagnetic member is attached to a second housing section so as to be within range of attraction force of the magnet when the actuator is in the second position. A hall sensor is attached to the housing so as to be proximate the magnet as the actuator is moved between first and second positions. Proximity of the magnet and hall sensor reverses the direction of rotation of the motor.
An apparatus for controlling a temperature change in a motor may include a rotor resistance estimator calculating a rotor resistance estimation value of the motor utilizing a DQ-axis voltage command value and a coordinate conversion DQ-axis current value, a synchronous angle estimator estimating a synchronous angle utilizing the rotor resistance estimation value, a rotor angular velocity of the motor and a DQ-axis current command value, a coordinate converter creating the coordinate conversion DQ-axis current value utilizing the synchronous angle and a sensing current value, a current controller creating the DQ-axis voltage command value utilizing the DQ-axis current command value and the coordinate conversion DQ-axis current value, and a power conversion unit converting the power according to the DQ-axis voltage command value and supplying the converted power to the motor.
A control device of an electric motor includes: an operating state setting unit configured to set an operating state; a maximum output acquiring unit configured to acquire maximum output of the electric motor that is preset according to the operating state set; a speed detecting unit configured to detect a speed of the electric motor; a torque limit value calculating unit configured to calculate a torque limit value based on the speed and the maximum output; and a torque limiting unit configured to limit torque of the electric motor by the torque limit value when accelerating the electric motor.
An electrical consumer of an aircraft comprises an electric motor and an inverter for producing an alternating voltage for the electric motor. A method for controlling the electrical consumer comprises determining a rotational frequency for the electric motor. The method also includes establishing whether the rotational frequency leads to oscillations in the input current of the inverter which are below a predefined threshold, the oscillations being produced by the inverter when producing a supply voltage for the electric motor, and changing the rotational frequency if it has been established that the rotational frequency leads to oscillations below the predefined threshold.
A system and method for operating an inverter to maximize an overall efficiency of a power system is disclosed. A power system includes an inverter having an arrangement of switching devices that are selectively operable in On and Off states to invert a DC output to an AC output having controlled current and voltage. A controller selectively controls operation of the arrangement of switching devices via a discontinuous pulse width modulation (DPWM) scheme, so as to regulate an average voltage of the AC output. In controlling operation of the arrangement of switching devices via the DPWM scheme, the controller is programmed to generate a DPWM reference waveform having an initial phase angle, determine a system efficiency of the power system during operation, calculate an optimal phase angle for the DPWM reference waveform based on the determined system efficiency, and generate a DPWM reference waveform having the calculated optimal phase angle.
A semiconductor device is provided that can prevent a current from being concentrated into a specific chip, and can reduce loss as well as noise. The semiconductor device according to the present invention includes: a switching element; a main diode that is connected in parallel to the switching element; and an auxiliary diode that is connected in parallel to the switching element and has a different structure from that of the main diode, wherein in a conductive state a current flowing through the auxiliary diode is smaller than that through the main diode, and in a transition period from the conductive state to a non-conductive state a current flowing through the auxiliary diode is larger than that through the main diode.
A method for designing cascaded multi-level inverters with minimization of large-scale voltage distortion, based on KKT (Karush-Kuhn-Tucker) conditions and with simplified computation of conduction angles, simplifies the computation process, and is conducive to on-line calculation. Meanwhile, its fundamental voltage is adaptive, minimization of total harmonic is realized for cascaded multi-level inverters at high-voltage, and voltage power quality at grid connected nodes is improved.
An AC-DC converter has a totem-pole output circuit having first and second semiconductor switches, each having a channel coupled to a switching node and having a parasitic capacitance associated with the channel. An inductor has one terminal thereof connected to a switching node. First and second bypass devices are coupled to a second terminal of the inductor and operable during at least a portion of an input voltage to allow reverse current from an output of the converter to generate soft-switching of the first semiconductor switch. An asymmetrical shunt for measuring current in a first direction and bypassing current in a second direction opposite the first direction allows accurate measurement of reverse current.
The direct current (DC) side fault isolator for high voltage direct current (HVDC) converters (10) includes a first set of double thyristor switches (12) connected across the line-to-line voltage terminals between first and second phases of alternating current (AC) terminals of a HVDC converter (14), and a second set of double thyristor switches (12) connected across the line-to-line voltage between the second phase and a third phase of the AC terminals of the HVDC converter (14). In use, the first and second sets of double thyristor switches (12) separate the HVDC converter (10) from an external power grid (18) during direct current (DC) side faults by turning on these thyristors (12).
A power conversion device is disclosed herein. The power conversion device includes an AC-DC conversion unit, a switching unit and a bypass circuit. The AC-DC conversion unit is configured to receive an AC input voltage via a power input terminal, and output a DC output voltage to a power output terminal according to the AC input voltage. The switching unit is configured to be switched off according to the AC input voltage received from the power input terminal, and to be switched on according to a DC input voltage received from the power input terminal. The bypass circuit is configured to receive the DC input voltage via the switching unit, and output the DC output voltage to the power output terminal according to the DC input voltage.
Provided is a smart matching step-down circuit, comprising an alternating current input terminal (10), a rectifier filter circuit (20), a switching circuit (30), a high voltage BUCK control step-down circuit (40), a floating zero potential control circuit (41), a voltage detection and feedback circuit (50), a PWM controller (52), a full-bridge DC/AC converter circuit (60), an alternating current output terminal (70), an output voltage detection circuit (62), and a conversion controller (80); the high voltage BUCK control step-down circuit comprises a step-down inductor (L1) and a step-down capacitor (C18); the first end of the step-down inductor is connected to the output terminal of the switching circuit; the second end of the step-down inductor is connected to the positive electrode of the step-down filter capacitor, and is used for stepping down and filtering the pulse voltage, then outputting a second direct current; the floating zero potential control circuit comprises a flyback diode (D11, D12); the cathode of the flyback diode is connected to the circuit ground, together with the first end of the step-down inductor; the anode of the flyback diode is connected to the floating ground (GND), together with the negative electrode of the step-down filter capacitor; the smart matching step-down circuit can step down a wide voltage, and is broadly adaptable.
A variable speed drive includes a converter connected to an AC power source, a DC link connected to the converter, and an inverter connected to the DC link. The inverter converts DC voltage into an output AC power having a variable voltage and frequency. The inverter includes at least one power electronics module and associated control circuitry; a heat sink in thermal communication with the power electronics module and in fluid communication with a manifold. The manifold includes a tubular member having at least one vertical member portion and at least one horizontal member portion in fluid communication. A plurality of ports conduct cooling fluid into and out of the manifold. A bracket attaches the manifold to a structural frame. Brackets are provided for attachment of power electronics modules to the manifold.
In a discharging operation of a vehicle storage battery, a controller switches between a full-wave rectification operation of full-wave rectify a voltage across a second winding while maintaining a second short circuit in an open state, and a full-wave voltage doubling rectification operation of full-wave voltage doubling rectify a voltage across second winding while maintaining second short circuit in a closed state, based on magnitude relationship between DC voltage across first terminals and DC voltage across second terminals. In a charging operation, controller switches between a full-wave rectification operation of full-wave rectify a voltage across a first winding while maintaining a first short circuit in an open state, and a full-wave voltage doubling rectification operation of full-wave voltage doubling rectify a voltage across first winding while maintaining first short circuit in a closed state, based on magnitude relationship between DC voltage across first terminals and DC voltage across second terminals.
A current-mode switch-mode power supply controller includes a switch controller, a falling edge detector, and leading edge blanking (LEB) time logic. The switch controller is arranged to control regulation of an output signal via current-mode regulation by turning a primary switch on and off based on a current sense (CS) signal and an LEB signal, such that the switch controller is arranged to cause the primary switch to remain on while the LEB time signal is asserted. The falling edge detector is arranged to detect a falling edge in the CS signal. The LEB time logic is arranged to provide the LEB time signal such that the assertion of the LEB time signal begins when a gate signal is asserted, and such that the assertion of the LEB time signal ends when the falling edge detector detects the falling edge in the CS signal.
A converter may include a transformer, an overcurrent protection switch configured to be installed at a primary side of the transformer to prevent an overcurrent, a comparator configured to detect a voltage of the overcurrent protection switch to convert the detected voltage into an output current sensing value and compare the output current sensing value with a reference value, and a protection controller configured to normally operate or forcibly turn off the overcurrent protection switch depending on a comparison result of the comparator.
A signal control circuit and a switching apparatus are provided. The switching apparatus includes: a switch for controlling a current flowing through an inductive element; a monitoring node connected with the switch; and a signal control circuit, connected with the monitoring node and a reference voltage, for turning on/off the switch, wherein the signal control circuit includes an integrator for generating a comparison voltage by using a monitoring voltage of the monitoring node and the reference voltage, wherein the integrator includes: a resistor unit; a capacitor unit; and an auto-calibrator for receiving at least one selection signal and determining at least one of a resistance of the resistor unit and a capacitance of the capacitor unit, during a power-up period, and allowing a peak value of the comparison voltage to fall within a target range.
A charge pump circuit is coupled between a positive supply node and a ground node. The charge pump circuit operates in response to clock signals output from a clock generator to produce a negative voltage at a negative voltage output node. A soft-start circuit for the charge pump circuit includes a comparison circuit configured to compare a varying intermediate voltage sensed between a rising supply voltage and the negative voltage to a ramp voltage during a start-up period of the charge pump circuit. The clock generator is selectively enabled to generate the clock signals in response to the comparison to provide for pulse-skipping.
The present invention concerns a synchronous generator of a gearless wind power installation, comprising a stator and a multi-part external rotor. The invention also concerns a wind power installation having such a generator. Furthermore the present invention concerns a transport arrangement for transporting a synchronous generator of a gearless wind power installation.
A core has accommodating slots each accommodating a permanent magnet. A fixing agent is injected into the space between the inner surface of each accommodating slot and the outer surface of the associated permanent magnet. A liquid-crystal polymer is used as the fixing agent. More specifically, liquid-crystal polyester is used.
An electric motor includes a stator operable to produce a magnetic field and defining an opening, and a rotor at least partially disposed within the opening. The rotor includes a shaft extending along a rotational axis, a first rotor magnetic core portion including a plurality of laminations stacked contiguously on the shaft, and a second rotor magnetic core portion coupled to the plurality of laminations. The first rotor magnetic core portion and the second rotor magnetic core portion cooperate to define the rotor magnetic core. A plurality of windings is coupled to the rotor magnetic core and an air flow path is formed as part of the second rotor magnetic core portion. The air flow path includes an axial portion that passes through the shaft axially along the rotational axis and a radial portion that extends radially outward through the second rotor magnetic core portion.
A stator for a rotational electrical machine includes a cylindrical stator core and a stator winding. The stator core includes slots arranged at intervals in a circumferential direction. The slots pass through the stator core in an axial direction. The stator winding is obtained by joining together ends of U-shaped conductors inserted through the slots. A second insertion part is located away from a first insertion part in the circumferential direction and is inserted in its corresponding slot. A joining end part is joined to another U-shaped conductor at a joining position away from the insertion part in the circumferential direction. The joining end part includes a first bent part and at least one second bent part. The first bent part is bent near an opening of its corresponding slot. The second bent part is bent between the first bent part and the joining position.
A stator arrangement for an electric machine is provided. The stator arrangement includes a stator having a stator yoke with a number of stator slots, with each stator slot accommodating at least one set of stator windings and at least one cooling device in the shape of a duct-like pipe. The duct-like pipe is divided in two or more separate cooling channels.
A motor includes a rotor and a stator. The rotor includes a plurality of magnets, which function as first magnetic poles, and salient poles, which function as second magnetic poles. A ratio X1:X2 of a quantity X1 of magnetic pole portions of the rotor, which is the sum of the quantity of the magnets and the quantity of the salient poles, and the quantity X2 of slots is 2n:3n (n being a natural number). The sum of a magnetic pole occupying angle θ1 of the magnet and a magnetic pole occupying angle θ2 of the salient pole is 360°. The magnetic pole occupying angle θ1 is set in a range of 180°<θ1≦230°.
A receiver for a wireless charging system, capable of receiving power energy using non-contact type magnetic induction, includes a coil capable of receiving the power energy and a part for generating a predetermined output power from the power energy received by the coil, a portable terminal, an NFC coil further provided outside of the coil, and a ferrite sheet further provided at the coil and the NFC coil.
A Portable automotive battery jumper pack with detachable backup battery. The invention is configured to be user friendly with a flexible compact design. The invention will be used in the portable, automotive electronics area.
A power transmission device includes a reception unit configured to receive, from each of a plurality of power reception devices as power transmission objects, identification information for identification of the power reception device, a device determination unit configured to determine, based on the identification information, whether each of the power reception devices is a registered device that has been registered beforehand, and a power transmission unit configured to transmit power to the registered device.
Provided is an energy storage system including: a battery device that is configured from multiple battery unit modules; and a power converting system that is configured to be connected to the battery device and that converts electric power that is applied between an electric power system and the battery device, in which the battery device includes multiple switches, each of which establishes a connection between each of the battery unit modules and the power converting system.
An autonomous thermal event control and monitoring system includes a processor component having an enclosure, a processor within the enclosure, a routine, a number of inputs from the processor, and a plurality of inputs to and a plurality of outputs from the processor for each of a plurality of feeders. The system also includes a human machine interface communicating with the processor. The inputs include for each of the feeders, a first input for a thermal sensor and a second input for a status of a network protector, a plurality of third inputs for statuses of a medium voltage interrupter, and a fourth input for a sudden pressure sensor of a network transformer. The outputs include for each of the feeders, a first output for a command to the network protector, and a plurality of second outputs for commands to the medium voltage interrupter.
A device for limiting disturbances of an electrical nature, such as currents induced by overvoltages caused by these disturbances, in particular electromagnetic, for example relating to events of lightning type in an electrical installation, including at least one protection apparatus of isolator or differential breaker type intended to protect at least one downstream electrical installation having at least one load and being powered between a neutral conductor and at least one phase conductor and including an earth link. A common-mode low-pass filter is connected in parallel between the neutral and each phase on one hand, and earth on the other hand.
A current detection device for detecting an electric current flowing through an inverter, an overcurrent level generation device for generating an abnormality judgment reference value, an overcurrent detection device for generating an interruption signal to the inverter on the basis of an output of the current detection device and the abnormality judgment reference value, and an adjusting apparatus for correcting the abnormality judgment reference value of the overcurrent level generation device on the basis of the output at a time when a constant electric current is applied to the current detection device are provided. The overcurrent level generating device is provided with one or a plurality of resistance value adjusting sections, and generates the abnormality judgment reference value in correspondence to a resistance value of the resistance value adjusting section. The adjusting apparatus performs a zapping operation by means of applying a reverse-bias to a zener diode, and corrects the abnormality judgment reference value.
In a holding component 1, for a vehicle, having: a fixing portion 10 which houses and fixedly engages with a mounting tool 101 having been moved upward through a lower opening 11H; and a holding portion 20 for holding a predetermined member 5 by an upper holding portion 21 and a lower holding portion 22 being engaged with each other, in a state where an engagement portion 23 provided in the upper holding portion 21 is housed in and engaged with an engagement housing portion 24 provided in the lower holding portion 22, a pressing portion 200 provided in the engagement portion 23 presses downward the mounting tool 101 which is engaged with and fixed to the fixing portion 10.
An electrical box includes a body, a cover that is movable relative to the body, and an electrical connection point that is mounted to the cover. The electrical connection point may be one or more of an electrical receptacle, a data jack, and/or the like. The cover may be attached to the body by a sliding hinge connection or a sliding pin connection that allows the cover to rotate relative to the body as well as translate relative to the body. An air pocket substantially filling a compartment in the cover is maintained during an opening or closing of the electrical box.
An incorrect fitting of a connector (40) is prevented, and a fitting work is enabled to be performed smoothly. A plurality of connectors (40), each having a housing (41) capable of fitting with its counterpart housing (71), is arranged in a line. Upon fitting of the housings (41, 71), a front face of each housing (41) is arranged so as to face a direction facing its counterpart housing (71), and an aligning direction of the connectors (40) is set to be a direction intersecting a front-rear direction. Through portions (52, 52E) are provided in the housings (41), and upon fitting of the housings (41, 71), each connector (40) is arranged at a position capable of facing its counterpart connector (70) by an aligning member (80, 100) that is passed through the respective through portions (52, 52E).
There is provided a surface emitting semiconductor laser including: a substrate; and a semiconductor layer including: a first semiconductor multilayer film having plural sets of specific layers, a second semiconductor multilayer film having plural sets of specific layers, and an active layer provided between them, so as to constitute a resonator.
Modelocked fiber laser resonators may be coupled with optical amplifiers. An isolator optionally may separate the resonator from the amplifier. A reflective optical element on one end of the resonator having a relatively low reflectivity may be employed to couple light from the resonator to the amplifier. Enhanced pulse-width control may be provided with concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers may also be included in the laser cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth may be obtained by matching the dispersion value of the grating to the inverse of the dispersion of the intra-cavity fiber. Frequency comb sources may be constructed from such modelocked fiber oscillators. Low dispersion and an in-line interferometer that provides feedback may assist in controlling the frequency components output from the comb source.
A wire straightening apparatus that straightens kinks of a wire that is fed along a wire feeding path includes one or a plurality of straightening mechanisms. Each straightening mechanism includes a plurality of first straightening rollers and one or a plurality of second straightening rollers. Each roller has a groove along its outer periphery, the groove gradually deepening toward a bottom portion. The bottom portion of the groove of each first straightening roller is spaced from the wire feeding path in a first direction, and the bottom portion of the groove of each second straightening roller is spaced from the wire feeding path in a second direction opposite to the first direction. With this structure, the wire can be made to follow a path that meanders as viewed from a direction perpendicular to axes of the straightening rollers.
When a hobby enthusiast has recharged the battery for a remote controlled vehicle, such as a scale facsimile automobile, boat, helicopter or airplane, the battery must be connected again to the vehicle drive system, to provide power. This operation is typically performed by connecting each lead of an electronic speed controller to each corresponding lead of the battery, through a removable barrel receptacle lead and a mating barrel plug lead respectively, attached to each corresponding lead. An improved connector lead is described herein that protects components that may be attached to either lead in a connection. The charge dissipates in a resistive member that is physically coupled to a conductive member to form at least in part a first lead. When an improved lead is connected to a mating lead, the connection initially provides a charge dissipation path through the resistive member, but subsequently provides a bypass, current carrying conductive path around the resistive member from one component to another. By making use of an improved connector, electrical components are protected, not only from hot-swap current, but also from electrostatic discharge in general.
A power cord includes a plug. The plug includes plural blades to be respectively inserted into plural blade insertion holes of an electrical outlet for connection. The plug further includes plural thermal sensors provided so that each of the plural blades corresponds to a thermal sensor. The power cord further includes a communication circuit that is configured to notify a control circuit of a load, when a temperature detected by any one of the plural thermal sensors is higher than a predetermined temperature.
An electrical connector includes an insulating housing, a plurality of conductive terminals, a shielding plate and a ground element. The insulating housing has a base portion, and a tongue portion protruded frontward from a front surface of the base portion. The conductive terminals are received in the insulating housing, and front ends of the conductive terminals are exposed to the tongue portion. The shielding plate is received in the insulating housing. The ground element is for being connected between the shielding plate and ground. The ground element is received in the insulating housing. The ground element has a touch portion contacting the shielding plate.
A high speed communication jack including a housing including a port for accepting a plug, the port including a plurality of pins each connected to a corresponding signal line in the plug, a shielding case surrounding the housing, a rigid circuit board in the housing having a substrate, a plurality of vias extending through the substrate with each via being configured to accommodate a pin on the housing, a plurality of traces on a middle layer in the substrate, with each trace extending from a corresponding one of the plurality of vias, a first shielding layer on a first side of the middle layer in the substrate, a second shielding layer on a second side of the middle layer in the substrate, and a third shielding layer adjacent to the second shielding layer.
A connector assembly includes a first connector that includes a ramp. A second connector has a pump handle that includes laterally spaced legs joined at a hook. The hook is configured to interlock with the ramp in an intermediate assembled condition that provides continuity between the first and second connectors. The pump handle has a lower surface. A positional assurance element is movably supported on the second connector and includes a tongue that is arranged between the legs. The tongue includes an upper surface that extends beyond the lower surface such that the tongue and the pump handle overlap one another with the first and second connectors in a nested but unassembled condition. The positional assurance element is configured to move from a retracted position to an extended position while in the intermediate assembled condition to provide a fully assembled condition.
A connector includes a housing, in which at least one contact is arranged. The housing includes at least one contact element, a base, a holder, and at least one lateral surface having an opening for passing a cable through and a holder for attaching a cable gland to the housing. The at least one lateral surface is inclined at an angle (α) of between 30° and 50° relative to the base. The connector also includes at least one cable gland, the cable gland including a support surface inclined relative to a longitudinal direction of the cable gland at an angle (β) of between 40° and 60°.
An electric heating device includes a box-shaped plug socket provided with a socket-side electroconductive part electrically connected to an electric heater; a power source plug provided with a plug-side electroconductive part electrically connectable to the socket-side electroconductive part and attachable to and detachable from the plug socket; a movement-restricting mechanism for restricting the movement of a protective member both toward and away from a socket-side electroconductive part in a protected state in which the protective member closes an opening of the plug socket and the socket-side electroconductive part are positioned within an interior space; and a switching mechanism for switching the protective member from a restricted movement state into a restriction released state, in which the restriction of movement by the movement restriction mechanism is released, as the power source plug is inserted into the plug socket.
An electrical connector mounted to a circuit board, includes an insulating housing, a plurality of terminals integrally molded to the insulating housing, a shell surrounding the insulating housing, and an upper cover covered on the circuit board. The shell has at least one lower fastening piece. At least one tongue board of the circuit board is fastened on the at least one lower fastening piece. Circuit lines equipped on a bottom surface of the at least one tongue board are embedded in lower embedding slots of the at least one lower fastening piece. The upper cover has at least one upper fastening piece. The at least one upper fastening piece is fastened on the at least one tongue board. Circuit lines equipped on a top surface of the at least one tongue board are embedded in upper embedding slots of the at least one upper fastening piece.
Methods, systems, and apparatuses are described for wireless communication using the mmW spectrum. In particular, antenna structures may include arrays of antenna elements to deal with line-of-sight issues. Further, antenna structures may be configured to produce a beam (e.g., signal) that is relatively narrow and has a relatively high gain to deal with losses, such as mentioned above. Still further, antenna structures may be configured to provide beam steering (e.g., beamforming) capability. Such antenna structures may be designed to be relatively compact to deal with the limited real estate available on modern wireless communication devices (e.g., cellular telephones).
An electronic device (100) includes an antenna system (150) having two antennas (110, 120). A first antenna (110) has a first antenna element (111) positioned near a first corner (191) of a planar, rectangular ground plane (165) and a second antenna element (115) positioned near a second corner of the ground plane that is diagonally across from the first corner. A second antenna (120) has a third antenna element (121) positioned near a third corner (193) of the ground plane that is adjacent to the first corner and a fourth antenna element (125) positioned near a fourth corner (195) of the ground plane that is diagonally across from the third corner. At low-band frequencies, the antenna elements (111, 115) of the first antenna (110) are driven out-of-phase relative to each other. Similarly, at low-band frequencies, the antenna elements (121, 125) of the second antenna (120) are driven out-of-phase relative to each other.
A subsurface antenna is designed for use below the surface of the Earth. In some configurations the antenna is a dipole antenna, which can be used for radio frequency heating of an oil-bearing formation.
A radar-based fill level measurement device having a signal generator for the purpose of generating electromagnetic waves, and an antenna for the purpose of emitting the electromagnetic waves into a container, as well as for the purpose of receiving electromagnetic waves reflected out of the container, having a security device for the purpose of verifying the functional capability or improving the measurement quality of the radar-based fill level measurement device, wherein the security device has a reflector and an adjusting device, and is suitably designed to move the reflector between at least a first position, in which it reflects the electromagnetic waves, and a second position, in which it reflects the electromagnetic waves to a reduced degree, and wherein the security device has a drive which acts on the adjusting device.
An apparatus and method for combining signals received from a direct broadcast satellite system with signals received from a wireless network, includes a satellite antenna for receiving the signals from the direct broadcast satellite system; and a wireless network antenna, co-located with the satellite antenna, for receiving the signals from the wireless network. The wireless network antenna includes an antenna assembly that is rotated by a controller based on characteristics of the signals received from the wireless network. The controller energizes and de-energizes a motor to mechanically rotate the antenna assembly to properly align the wireless network antenna to communicate with the wireless network. The wireless network antenna comprises a closed cylinder, wherein the antenna assembly is rotatably mounted within the closed cylinder, such that, upon command from the controller, the motor engages the antenna assembly to mechanically rotate the antenna assembly about a central axis of the closed cylinder.
An antenna includes a dielectric material having a first side opposite a second side, and a conductive via therein. A first planar conducting element is on the first side of the dielectric material and has at least one closed slot therein, and an electrical connection to the conductive via. A second planar conducting element is on the first side of the dielectric material. Each of the first and second planar conducting elements is positioned adjacent a gap that electrically isolates the first planar conducting element from the second planar conducting element. An electrical microstrip feed line is on the second side of the dielectric material, is electrically connected to the conductive via, and has a route extending from the conductive via, to across the gap, to under the second planar conducting element. The second planar conducting element provides a reference plane for the electrical microstrip feed line.
Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. An inverted-F antenna may have first and second short circuit legs and a feed leg. The first and second short circuit legs and the feed leg may be connected to a folded antenna resonating element arm. The antenna resonating element arm and the first short circuit leg may be formed from portions of a conductive electronic device bezel. The folded antenna resonating element arm may have a bend. The bezel may have a gap that is located at the bend. Part of the folded resonating element arm may be formed from a conductive trace on a dielectric member. A spring may be used in connecting the conductive trace to the electronic device bezel portion of the antenna resonating element arm.
An electronic device is provided. The electronic device includes a casing, a display module, and a communication module. The casing includes a first surface and a second surface. The display module is disposed on the first surface and has a display region. The communication module includes a first antenna module and a second antenna module. The first antenna module is disposed close to the display module and is corresponding perpendicularly to at least one part of the display region. The second antenna module is disposed close to the second surface. The communication module selectively receives and transmits a wireless signal along an outward direction extending from the first surface via the first antenna module or along an outward direction extending from the second surface via the second antenna module.
An exemplary antenna module includes a metal unit, a ground unit, a feed unit, and a resonating unit. The metal unit is a metal housing or a metal sidewall of a wireless communication device. One end of the ground unit is connected to the metal unit and another end of the ground unit is grounded. One end of the feed unit is connected to the metal unit and another end of the feed unit is connected to a feed point of the wireless communication device. The resonating unit and the metal unit cooperatively generate a resonating, thereby receiving/sending wireless signals in corresponding frequency bands.
A multiple-input-multiple output antenna for use with wireless communication comprises a first element a first radiation element operable to resonate at a first frequency and a second radiation element operable to resonate at a second frequency, wherein the second frequency is not an integer multiple of the first frequency. The first and second antenna radiation elements are each proximate to a ground plane and the respective resonance frequencies of the first radiation element and the second radiation element is achieved by controlling the electrical coupling between the first radiation element, the second radiation element and the ground plane and the resonance frequencies of the first and second radiation elements is controlled independently.
A system for accurately directing a directional antenna, that includes a calibration system for finding the current azimuth of the antenna and a rotation sensor attached to the antenna, for measuring deviations from the current azimuth of the antenna. The calibration system includes a first GPS receiver located at the antenna's position; a second GPS receiver located adjacent to a visible object at a minimal distance from the antenna and in an arbitrary direction with respect to the first GPS receiver; rotatable optical means positioned adjacent to the antenna in an initial direction being parallel to the current direction of the antenna, the optical means being coupled to a meter for measuring the angle between the current direction and the direction to the visible object by rotating the optical means until seeing the visible object and means for calculating a first azimuth from the position of the first GPS receiver to the position of the second GPS receiver and the current azimuth of the antenna by subtracting the angle from the first azimuth.
A signal distribution structure including: a dielectric material; an overlying conducting layer on a first level of the dielectric material; a first signal line on a second level of the dielectric material, the first signal line being physically separated from the overlying conducting layer by the dielectric material; wherein the overlying conducting layer includes a window running parallel to the first signal line, and further comprising within the window a first coupler electrode on the first level of the dielectric material, the first coupler electrode above, parallel to, and electrically isolated by the dielectric material from the first signal line, wherein the first coupler electrode is electrically isolated from the overlying conducting layer along at least most of its periphery.
A heat exchanger assembly includes a fluid transfer layer and a first external layer. The fluid transfer layer is made from an elastomeric material and the first external layer includes flexible graphite. The fluid transfer layer includes at least one channel and is configured to form a passage for receiving a thermal transfer fluid between the channel and a portion of the first external layer.
Provided are a battery temperature regulation system capable of efficiently heating and/or cooling a battery, and a battery temperature regulation unit suitable for use in the battery temperature regulation system. The battery temperature regulation system 10 is provided with a thermally conductive member (e.g., a heat pipe 11) thermally connected to a battery 1, a heating device (e.g., a heater 12) that heats the battery 1 via the thermally conductive member and/or a cooling device (e.g., an air conditioning apparatus) that cools the battery 1 via the thermally conductive member.
Composite structures including an ion-conducting material and a polymeric material (e.g., a separator) to protect electrodes are generally described. The ion-conducting material may be in the form of a layer that is bonded to a polymeric separator. The ion-conducting material may comprise a lithium oxysulfide having a lithium-ion conductivity of at least at least 10−6 S/cm.
A method of starting a fuel cell system for a vehicle includes determining whether or not an activation signal of a fuel cell provided in the fuel cell system has been inputted, operating, if it is determined that the activation signal has been inputted, a cooling medium circulation pump to supply a cooling medium to an impurity removal mechanism for reducing a conductivity of the cooling medium, and driving an oxidant gas supply device and a fuel gas supply device in the fuel cell system to start activation of the fuel cell if it is determined that the conductivity of the cooling medium is less than or equal to a predetermined value.
A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.
An object is to provide graphene which has high conductivity and is permeable to ions of lithium or the like. Another object is to provide, with use of the graphene, a power storage device with excellent charging and discharging characteristics. Graphene having a hole inside a ring-like structure formed by carbon and nitrogen has conductivity and is permeable to ions of lithium or the like. The nitrogen concentration in graphene is preferably higher than or equal to 0.4 at. % and lower than or equal to 40 at. %. With use of such graphene, ions of lithium or the like can be preferably made to pass; thus, a power storage device with excellent charging and discharging characteristics can be provided.
The lithium rechargeable battery of the present invention is provided with a current collector and an active material layer containing active material particles 10 supported on this current collector. The active material particles 10 are secondary particles 14 in which a plurality of primary particles 12 of a lithium transition metal oxide are aggregated, and have a hollow structure that contains a hollow section 16 formed inside the secondary particle 14 and a shell section 15 that surrounds the hollow section 16. A through hole 18 that penetrates from the outside to the hollow section 16 is formed in the secondary particle 14. The ratio (A/B) in a powder x-ray diffraction pattern of the active material particles 10, where A is the full width at half maximum of the diffraction peak obtained for the (003) plane and B is the full width at half maximum of the diffraction peak obtained for the (104) plane, satisfies the equation (A/B)≦0.7.
A battery case lid is formed by working a metal plate, and includes a substrate section and an explosion-proof valve formed in the substrate section. The explosion-proof valve has a reduced thickness section that is thinner than the substrate section, and the reduced thickness section is formed by extending the metal plate by applying pressure while the metal plate is kept unrestrained.
In an organic EL display device (electroluminescent device) equipped with an organic EL element (electroluminescent element), the organic EL element is encapsulated by a TFT substrate (substrate), a counter substrate, and a sealing resin. A desiccant layer and a highly-moisture-permeable layer are laminated in this order on the organic EL element. The highly-moisture-permeable layer is in direct contact with the sealing resin.
An organic compound represented by Chemical Formula 1, an organic optoelectric device including the organic compound, and a display device are disclosed.
A condensed-cyclic compound represented by Formula 1 below, and an organic light-emitting diode including the condensed-cyclic compound. wherein R1 through R6, Ar5 and Ar6, and X1 through X10 are defined as in the specification.
The present invention relates to a mixture comprising a) a polymer which contains at least one L=X structural unit, b) a triplet emitter compound and c) a carbazole compound or a soluble neutral molecule. The invention furthermore relates to organic electroluminescent devices which contain the mixture according to the invention.
A phase change memory cell. The phase change memory cell includes a substrate and a phase change material. The phase change material is deposited on the substrate for performing a phase change function in the phase change memory cell. The phase change material is an alloy having a mass density change of less than three percent during a transition between an amorphous phase and a crystalline phase.
A LED filament and a LED filament bulb using the same are disclosed. The LED filament includes a carrier, a LED chip disposed on the carrier and a conductive lead connected to the carrier. The conductive lead is electrically connected to the LED chip and includes a lead head portion, a lead tail portion and a lead neck portion connecting the lead head portion with the lead tail portion. A solid body width of the lead neck portion is less than a maximum solid body width of the lead head portion. Because the lead neck portion with reduced solid body width can function as a vulnerable position of the conductive lead, when a stress is applied onto the conductive lead, the lead neck portion would first take action and therefore the bonding location between the lead head portion and the carrier or the carrier itself can be protected.
A red phosphor including the composition represented by the following general formula. (x−a)MgO.(a/2)Sc2O3.yMgF2.cCaF2.(1−b)GeO2.(b/2)M2O3:zMn4+ where x, y, z, a, b, and c satisfy 2.0≦x≦4.0, 0
A method for fabricating a Light Emitting Diode (LED) with increased light extraction efficiency, comprising providing a III-Nitride based LED structure comprising a light emitting active layer between a p-type layer and an n-type layer; growing a Zinc Oxide (ZnO) layer epitaxially on the p-type layer by submerging a surface of the p-type layer in a low temperature aqueous solution, wherein the ZnO layer is a transparent current spreading layer; and depositing a p-type contact on the ZnO layer. The increase in efficiency may be more than 93% with very little or no increase in cost.
Solid-state radiation transducer (SSRT) devices having buried contacts that are at least partially transparent and associated systems and methods are disclosed herein. An SSRT device configured in accordance with a particular embodiment can include a radiation transducer including a first semiconductor material, a second semiconductor material, and an active region between the first semiconductor material and the second semiconductor material. The SSRT device can further include first and second contacts electrically coupled to the first and second semiconductor materials, respectively. The second contact can include a plurality of buried-contact elements electrically coupled to the second semiconductor material. Individual buried-contact elements can have a transparent portion directly adjacent to the second semiconductor material. The second contact can further include a base portion extending between the buried-contact elements, such as a base portion that is least partially planar and reflective.
A light emitting diode device is provided. The light emitting diode device has a substrate, a plurality of metal pads, a plurality of LEDs and a first metal conductive wire. A plurality of first metal pads of the metal pads are disposed on a first surface of the substrate, and the LEDs are disposed on a part of the first metal pads. Each of the LEDs has at least one first electrode contact. The first electrode contact of each of the LEDs electrically connected to the first metal conductive wire has the same electrode contact polarity. Moreover, another light emitting diode device is also provided.
The maximum value of peak intensities of cathode luminescence of a wavelength corresponding to a band gap of gallium nitride and in a measured visual field of 0.1 mm×0.1 mm is 140 percent or higher of an average value of the peak intensities of the cathode luminescence, provided that the peak intensities of the cathode luminescence are measured on a surface of the gallium nitride substrate.
An LED die includes a substrate, a first semiconductor layer, an active layer, a second semiconductor layer, a transparent conductive layer, a first electrode and a second electrode. The first semiconductor layer, the active layer, the second semiconductor layer and the transparent conductive layer are successively formed on the substrate. The first electrode and the second electrode respectively is formed on the first semiconductor layer and the transparent conductive layer. A plurality of grooves defined on the first semiconductor layer, and a plurality of hole groups defined on the second semiconductor layer. The present disclosure also provides a method of manufacturing the LED die.
A method for manufacturing a semiconductor element includes providing a wafer having a sapphire substrate and a semiconductor stacked body disposed on the sapphire substrate, performing a first scanning of a portion of the sapphire substrate in which a laser beam is irradiated into an interior of the sapphire substrate, performing a second scanning of the portion of the sapphire substrate in which a laser beam is irradiated into the interior of the sapphire substrate, the second scanning occurring after the first scanning and before a void is produced in the interior of the sapphire substrate irradiated with the laser beam in the first scanning, and separating the wafer into a plurality of semiconductor elements.
In a light emitting device, a light waveguide is provided with a first region including a central position, a second region including a first light emission surface, and a third region including a second light emission surface. A second cladding layer includes a plurality of noncontact regions. The plurality of noncontact regions intersect the light waveguide. A ratio of an area in which the plurality of noncontact regions overlap the first region to an area of the first region is greater than a ratio of an area in which the plurality of noncontact regions overlap the second region to an area of the second region, and is greater than a ratio of an area in which the plurality of noncontact regions overlap the third region to an area of the third region.
MOSFET phototransistors, methods of operating the MOSFET phototransistors and methods of making the MOSFET phototransistors are provided. The phototransistors have a buried electrode configuration, which makes it possible to irradiate the entire surface areas of the radiation-receiving surfaces of the phototransistors.
A power generating film is disposed on a substrate, a transparent conductive film is disposed on the power generating film in an overlapping manner, a first insulating film having a thickness of greater than or equal to 1 μm is disposed on the transparent conductive film, and the substrate is formed into a predetermined shape by irradiating the substrate with laser light which is condensed thereto and by spraying gas onto the substrate.
A solar power system. A plurality of solar cells are joined to a foldable base. The foldable base has areas between the solar cells configured to fold to enable stacking of the solar cells. A voltage regulator is coupled to solar cells and an electrical connector is electrically coupled to the voltage regulator and configured to electrically couple to, and deliver an electric current to, an electrical device. In implementations a reflector is coupled to the foldable base adjacent to one or more of the plurality of solar cells, the reflector including a reflective material on a face of a flexible material, the reflective material configured to reflect light towards one or more of the plurality of solar cells. In implementations the voltage regulator is a pulse width modulation (PWM) voltage regulator. In implementations a switch coupled to the voltage regulator adjusts the voltage output between two or more levels.
A multiple junction thin film transistor (TFT) is disclosed. The body of the TFT may have an n+ layer residing in a p− region of the body. The TFT may have an n+ source and an n+ drain on either side of the p− region of the body. Thus, the TFT has an n+/p−/n+/p−/n+ structure in this example. The n+ layer in the p− region increases the breakdown voltage. Also, drive current is increased. The impurity concentration in the n+ layer in the p− body and/or thickness of the n+ layer in the p− body may be tuned to increase performance of the TFT. In an alternative, the body of the TFT has a p+ layer residing in an n− region of the body. The TFT may have a p+ source and a p+ drain on either side of the p− region of the body.
A semiconductor device includes a gate electrode having a first side wall at an end thereof, a gate insulating layer on a top surface and the first side wall of the gate electrode, an oxide semiconductor layer facing the first side wall, the gate insulating layer being between the first side wall and the oxide semiconductor layer, a first insulating layer on the oxide semiconductor layer, the oxide semiconductor layer being between the gate insulating layer and the first insulating layer, a first electrode connected with a first portion of the oxide semiconductor layer, and a second electrode connected with a second portion of the oxide semiconductor layer.
A thin film transistor (TFT) includes a semiconductive layer, a first inter-layer drain (ILD) layer, a second ILD layer, and at least one contact hole passing through the first ILD layer and the second ILD layer. The semiconductive layer includes a channel region, a first lightly doped drain (LDD) region, a second LDD region, a first heavily doped drain (HDD) region, and a second HDD region. The at least one contact hole includes a first portion passing through the second ILD layer and a second portion passing through the first ILD layer. The second portion gradually narrows along a direction from a top to a bottom of the first ILD layer.
A semiconductor device includes a fin structure disposed over a substrate, a gate structure and a source. The fin structure includes an upper layer being exposed from an isolation insulating layer. The gate structure disposed over part of the upper layer of the fin structure. The source includes the upper layer of the fin structure not covered by the gate structure. The upper layer of the fin structure of the source is covered by a crystal semiconductor layer. The crystal semiconductor layer is covered by a silicide layer formed by Si and a first metal element. The silicide layer is covered by a first metal layer. A second metal layer made of the first metal element is disposed between the first metal layer and the isolation insulating layer.
In a front surface of a semiconductor base body, a gate trench is disposed penetrating an n+-type source region and a p-type base region to a second n-type drift region. In the second n-type drift region, a p-type semiconductor region is selectively disposed. Between adjacent gate trenches, a contact trench is disposed penetrating the n+-type source region and the p-type base region, and going through the second n-type drift region to the p-type semiconductor region. A source electrode embedded in the contact trench contacts the p-type semiconductor region at a bottom portion and corner portion of the contact trench, and forms a Schottky junction with the second n-type drift region at a side wall of the contact trench.
The present disclosure relates to a superjunction device and a semiconductor structure having the same. The superjunction device includes a body region of a second conduction type, a drain region of a first conduction type, a drift region located between said body region and said drain region. The drift region includes first regions of a first conduction type and second regions of a second conduction type arranged alternately along a direction being perpendicular to the direction from the body region to the drain region, and a plurality of trench gate structures, each of them comprising a trench extending into said drift region from an upper surface of said body region and a gate electrode in said trench surrounded by a first dielectric layer filling said trench, and a source region of a first conduction type embedded into said body region. There is no source region along at least 10% of the total interface length between the first dielectric layer and the body region.
A compound semiconductor device includes: a semiconductor substrate; a channel layer over the semiconductor substrate; a carrier supply layer over the channel layer; and a gate electrode, a source electrode and a drain electrode above the carrier supply layer. The semiconductor substrate includes an impurity-containing region containing an impurity, the impurity forms a level lower than a lower edge of a conduction band of silicon by 0.25 eV or more, the impurity forms the level higher than an upper edge of a valence band of silicon.
In a method of further enhancing the performance of a narrow active cell IE type trench gate IGBT having the width of active cells narrower than that of inactive cells, it is effective to shrink the cells so that the IE effects are enhanced. However, when the cells are shrunk simply, the switching speed is reduced due to increased gate capacitance. A cell formation area of the IE type trench gate IGBT is basically composed of first linear unit cell areas having linear active cell areas, second linear unit cell areas having linear hole collector areas and linear inactive cell areas disposed therebetween.
A vertical tunneling FET (TFET) provides low-power, high-speed switching performance for transistors having critical dimensions below 7 nm. The vertical TFET uses a gate-all-around (GAA) device architecture having a cylindrical structure that extends above the surface of a doped well formed in a silicon substrate. The cylindrical structure includes a lower drain region, a channel, and an upper source region, which are grown epitaxially from the doped well. The channel is made of intrinsic silicon, while the source and drain regions are doped in-situ. An annular gate surrounds the channel, capacitively controlling current flow through the channel from all sides. The source is electrically accessible via a front side contact, while the drain is accessed via a backside contact that provides low contact resistance and also serves as a heat sink. Reliability of vertical TFET integrated circuits is enhanced by coupling the vertical TFETs to electrostatic discharge (ESD) diodes.
A method for making a semiconductor device may include forming first and second spaced apart semiconductor active regions with an insulating region therebetween, forming at least one sacrificial gate line extending between the first and second spaced apart semiconductor active regions and over the insulating region, and forming sidewall spacers on opposing sides of the at least one sacrificial gate line. The method may further include removing portions of the at least one sacrificial gate line within the sidewall spacers and above the insulating region defining at least one gate line end recess, filling the at least one gate line end recess with a dielectric material, and forming respective replacement gates in place of portions of the at least one sacrificial gate line above the first and second spaced apart semiconductor active regions.
A multi-finger lateral high voltage transistors (MFLHVT) includes a substrate doped a first dopant type, a well doped a second dopant type, and a buried drift layer (BDL) doped first type having a diluted BDL portion (DBDL) including dilution stripes. A semiconductor surface doped the second type is on the BDL. Dielectric isolation regions have gaps defining a first active area in a first gap region (first MOAT) and a second active area in a second gap region (second MOAT). A drain includes drain fingers in the second MOAT interdigitated with source fingers in the first MOAT each doped second type. The DBDL is within a fingertip drift region associated drain fingertips and/or source fingertips between the first and second MOAT. A gate stack is on the semiconductor surface between source and drain. The dilution stripes have stripe widths that increase monotonically with a drift length at their respective positions.
A method of fabricating a semiconductor device includes forming at least one semiconductor fin on a semiconductor substrate. A plurality of gate formation layers is formed on an etch stop layer disposed on the fin. The plurality of gate formation layers include a dummy gate layer formed from a dielectric material. The plurality of gate formation layers is patterned to form a plurality of dummy gate elements on the etch stop layer. Each dummy gate element is formed from the dielectric material. A spacer layer formed on the dummy gate elements is etched to form a spacer on each sidewall of dummy gate elements. A portion of the etch stop layer located between each dummy gate element is etched to expose a portion the semiconductor fin. A semiconductor material is epitaxially grown from the exposed portion of the semiconductor fin to form source/drain regions.
A vertical gate all around (VGAA) nanowire device circuit routing structure is disclosed. The circuit routing structure comprises a plurality of VGAA nanowire devices including a NMOS and a PMOS device. The devices are formed on a semiconductor-on-insulator substrate. Each device comprises a bottom plate and a top plate wherein one of the bottom and top plates serves as a drain node and the other serves as a source node. Each device further comprises a gate layer. The gate layer fully surrounds a vertical channel in the device. In one example, a CMOS circuit is formed with an oxide (OD) block layer that serves as a common bottom plate for the NMOS and PMOS devices. In another example, a CMOS circuit is formed with a top plate that serves as a common top plate for the NMOS device and the PMOS devices. In another example, a SRAM circuit is formed.
A nonvolatile memory device includes a pipe gate electrode layer formed over a substrate; a plurality of conductive layers stacked over the pipe gate electrode layer; source lines formed over an uppermost one of the conductive layers; first slits passing through the pipe gate electrode layer at positions overlapping with the source lines, and dividing the pipe gate electrode layer into a plurality of pipe gate electrodes, and second slits passing through the conductive layers at positions different from the first slits, and dividing the conductive layers into a plurality of memory blocks.
A method of filling a depression of a workpiece is provided. The depression passes through an insulating film and extends up to an inside of a semiconductor substrate. The method includes forming a first thin film made of a semiconductor material along a wall surface which defines the depression, performing gas phase doping on the first thin film, by annealing the workpiece within a vessel, forming an epitaxial region from the semiconductor material of the first thin film along a surface of the semiconductor substrate which defines the depression, without moving the first thin film with the gas phase doping performed, forming a second thin film made of a semiconductor material along the wall surface which defines the depression; and by annealing the workpiece within the vessel, further forming an epitaxial region from the semiconductor material of the second thin film moved toward a bottom of the depression.
A semiconductor substrate of an embodiment includes a SiC layer having a surface inclined in a <11-20> direction plus or minus 5° from a {0001} face at an off angle of 0° to 10°. Area density of threading edge dislocation clusters in the SiC layer is 18.8 cm−2 or less, each of the threading edge dislocation clusters includes a plurality of threading edge dislocations on the surface, the threading edge dislocations included in each of the threading edge dislocation clusters exist in a region that extends in a [1-100] direction plus or minus 5° and has a width of 30 μm or less, each of the threading edge dislocation clusters includes at least three threading edge dislocations adjacent at an interval of 30 μm or less, and an interval of adjacent threading edge dislocations in each of the threading edge dislocation clusters is 70 μm or less.
A MOSFET structure and a method for manufacturing the same are disclosed. The method comprises: a. providing a substrate (100); b. forming a silicon germanium channel layer (101), a dummy gate structure (200) and a sacrificial spacer (102); c. removing the silicon germanium channel layer and portions of the substrate which are not covered by the dummy gate structure (200) and located under both sides of the dummy gate structure 200, so as to form vacancies (201); d. selectively epitaxially growing a first semiconductor layer (300) on the semiconductor structure to fill bottom and sidewalls of the vacancies (201); and e. removing the sacrificial spacer (102) and filling a second semiconductor layer (400) in the vacancies which are not filled by the first semiconductor layer (300). In the semiconductor structure of the present disclosure, carrier mobility in the channel can be increased, negative effects induced by the short channel effects can be suppressed, and device performance can be enhanced.
Non-planar semiconductor devices having group III-V material active regions with multi-dielectric gate stacks are described. For example, a semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a three dimensional group III-V material body with a channel region. A source and drain material region is disposed above the three-dimensional group III-V material body. A trench is disposed in the source and drain material region separating a source region from a drain region, and exposing at least a portion of the channel region. A gate stack is disposed in the trench and on the exposed portion of the channel region. The gate stack includes first and second dielectric layers and a gate electrode.
Disclosed herein is a display apparatus, including: a plurality of subpixels disposed adjacent each other and forming one pixel which forms a unit for formation of a color image; the plurality of subpixels including a first subpixel which emits light of the shortest wavelength and a second subpixel disposed adjacent the first subpixel; the second subpixel having a light blocking member disposed between the second subpixel and the first subpixel and having a width greater than a channel length or a channel width of a transistor which forms the second subpixel.
A flexible input and output device in which defects due to a crack is reduced. The input and output device includes a first flexible substrate, a second flexible substrate, a first buffer layer, a first crack inhibiting layer, an input device, and a light-emitting element. A first surface of the first flexible substrate faces a second surface of the second flexible substrate. The first buffer layer, the first crack inhibiting layer, and the input device are provided on the first surface side of the first flexible substrate. The first buffer layer includes a region overlapping with the first crack inhibiting layer. The first buffer layer is between the first crack inhibiting layer and the first surface. The input device includes a transistor and a sensor element. The light-emitting element is provided on the second surface side of the second flexible substrate.
An organic light-emitting diode display apparatus includes a substrate. An organic light-emitting device is disposed on the substrate and includes a first electrode, a second electrode, and an emission layer disposed between the first electrode and the second electrode. A reflectance of the first electrode is greater than a reflectance of the second electrode. A thin-film transistor is disposed between the substrate and the first electrode and is connected to the first electrode. A first light reflective layer is connected to the thin-film transistor that is disposed between the substrate and the first electrode. A photo sensor is disposed in an outer area of the substrate and is configured to sense light reflected from the first light reflective layer.
An organic light emitting display device includes a plurality of sub-pixels arranged in a substantially hexagonally-shaped structure, each of the sub-pixels including a corresponding one of a plurality of organic light emitting devices, wherein the plurality of sub-pixels includes a plurality of first sub-pixels for emitting light of a first color, a plurality of second sub-pixels for emitting light of a second color, and a plurality of third sub-pixels for emitting light of a third color, and wherein centers of adjacent ones of the first, second, and third sub-pixels form a triangle having one of three sides that is shorter than the other two of the sides.
A solid-state imaging device includes: multiple pixels. Each pixel is arranged at a surface layer portion of a semiconductor substrate, and includes: a photoelectric conversion portion that converts light incident into an electric charge; a charge holding portion that stores the electric charge, and is arranged in the semiconductor substrate; a multiplication gate electrode that is capacitively coupled with the charge holding portion, and is arranged on the semiconductor substrate via an insulation film; and a charge barrier portion that is arranged between the charge holding portion and the insulation film, and has a higher impurity concentration than the semiconductor substrate.
An image sensor includes a substrate including a photoelectric conversion region, an interlayer insulation layer including an interconnection line and formed on the substrate, a condensing pattern having a first refractive index and including a first region upwardly protruding from the interlayer insulation layer and a second region buried in the interlayer insulation layer, and a color filter formed on the condensing pattern to bury the condensing pattern.
A semiconductor device includes a transistor and a capacitor. The transistor includes a first conductive film; a first insulating film including a film containing hydrogen; a second insulating film including an oxide insulating film; an oxide semiconductor film including a first region and a pair of second regions; a pair of electrodes; a gate insulating film; and a second conductive film. The capacitor includes a lower electrode, an inter-electrode insulating film, and an upper electrode. The lower electrode contains the same material as the first conductive film. The inter-electrode insulating film includes a third insulating film containing the same material as the first insulating film and a fourth insulating film containing the same material as the gate insulating film. The upper electrode contains the same material as the second conductive film. A fifth insulating film containing hydrogen is provided over the transistor.
Various embodiments include field effect transistors (FETs) and methods of forming such FETs. One method includes: forming a first set of openings in a precursor structure having: a silicon substrate having a crystal direction, the silicon substrate substantially abutted by a first oxide; a silicon germanium (SiGe) layer overlying the silicon substrate; a silicon layer overlying the SiGe layer; a second oxide overlying the silicon layer; and a sacrificial layer overlying the second oxide, wherein the first set of openings each expose the silicon substrate; undercut etching the silicon substrate in a direction perpendicular to the crystal direction of the silicon substrate to form a trench corresponding with each of the first set of openings; passivating exposed surfaces of at least one of the SiGe layer or the silicon layer in the first set of openings; and at least partially filling each trench with a dielectric.
An integrated circuit includes a transistor, an UTBOX buried insulating layer disposed under it and a ground plane disposed under the layer. A well is disposed under the plane and a first trench is at the periphery of the transistor and extends through the layer into the well. There is a substrate under the well and a p-n diode on a side of the transistor. The diode comprises first and second zones of opposite doping and the first zone is configured for electrical connection to a first electrode of the transistor. The first and second zones are coplanar with the plane and a second trench for separating the first and second zones. The second trench extends through the layer into the plane to a depth less than an interface between the plane and the well. There is a third zone under the second trench forming a junction between the zones.
A non-volatile memory device is provided. The non-volatile memory device includes a substrate area, two storage units, a spacer structure and two control units. The storage units include two anti-fuse gates each having a gate dielectric layer between the anti-fuse gate and the substrate area and two diffusion areas. The spacer structure is formed on the substrate area and between the two anti-fuse gates and contacts thereto. Each of the diffusion areas is a first doping area doped with a first type dopant contacting one of the two anti-fuse gates. Each of the control units includes a select gate formed on the substrate area and a second doping area. A first side of the select gate contacts one of the diffusion areas of the storage unit. The second doping area is doped with the first type dopant and contacts a second side of the select gate.
A finFET device according to some examples herein may include an active gate element above an active fin element and a dummy fin element that partially breaks the active gate element. In another example, a dummy gate element adjacent to an active gate element contains a dummy fin element that partially breaks the dummy gate element. In another example, a first dummy fin element partially breaks an active gate element and a second dummy fin element partially breaks a dummy gate element. In another example, the dummy fin element is of the same material as the active fin element. In another example, the dummy fin element partially breaks a gate element but does not extend to the substrate like the active fin element.
A method for forming a semiconductor device, including forming one or more fin structures on a semiconductor substrate, where the fin structure defines source and drain regions. The method includes forming a gate stack, depositing a first contact insulator layer, and applying an etching process to portions of the first insulator layer to form a trench that extends to the source region. The method also includes depositing an epitaxial lower band gap source material into the trench and extending to the source region, depositing a second insulator layer, applying a second etching process to portions of the second insulator layer to form a trench that extends to the source and drain regions, and depositing a metalizing material over the substrate.
A semiconductor device and a method of fabricating the same, the semiconductor device includes a substrate, a first gate and a second gate. The first gate is disposed on the substrate and includes a first gate insulating layer, a polysilicon layer, a silicide layer and a protective layer stacked with each other on the substrate and a first spacer surrounds the first gate insulating layer, the polysilicon layer, the silicide layer and the protective layer. The second gate is disposed on the substrate and includes a second gate insulating layer, a work function metal layer and a conductive layer stacked with each other on the substrate, and a second spacer surrounds the second gate insulating layer, the work function metal layer and the conductive layer.
Stacked devices and circuits formed by stacked devices are described. In accordance with some embodiments, a semiconductor post extends vertically from a substrate. A first source/drain region is in the semiconductor post. A first gate electrode layer laterally surrounds the semiconductor post and is vertically above the first source/drain region. A first gate dielectric layer is interposed between the first gate electrode layer and the semiconductor post. A second source/drain region is in the semiconductor post and is vertically above the first gate electrode layer. The second source/drain region is connected to a power supply node. A second gate electrode layer laterally surrounds the semiconductor post and is vertically above the second source/drain region. A second gate dielectric layer is interposed between the second gate electrode layer and the semiconductor post. A third source/drain region is in the semiconductor post and is vertically above the second gate electrode layer.
A transistor switch device is provided that exhibits relatively good voltage capability and relatively easy drive requirements to turn the device on and off. This can reduce transient drive current flows that may perturb other components.
An ESD protection semiconductor device includes a substrate, a gate set formed on the substrate, a source region and a drain region formed in the substrate respectively at two sides of the gate set, and at least a first doped region formed in the drain region. The source region and the drain region include a first conductivity type, and the first doped region includes a second conductivity type. The first conductivity type and the second conductivity type are complementary to each other. The first doped region is electrically connected to a ground potential.
A method of making a semiconductor device comprises the steps of providing a first manufacturing line, providing a second manufacturing line, and forming a first redistribution interconnect structure using the first manufacturing line while simultaneously forming a second redistribution interconnect structure using the second manufacturing line. The method further includes the steps of testing a first unit of the first redistribution interconnect structure to determine a first known good unit (KGU), disposing a known good semiconductor die (KGD) over the first KGU of the first redistribution interconnect structure, testing a unit of the second redistribution interconnect structure to determine a second known good unit (KGU, and disposing the second KGU of the second redistribution interconnect structure over the first KGU of the first redistribution interconnect structure and the KGD. A resolution of the second manufacturing line is greater than a resolution of the first manufacturing line.
Microelectronic die packages, stacked systems of die packages, and methods of manufacturing them are disclosed herein. In one embodiment, a system of stacked packages includes a first die package having a bottom side, a first dielectric casing, and first metal leads; a second die package having a top side attached to the bottom side of the first package, a dielectric casing with a lateral side, and second metal leads aligned with and projecting towards the first metal leads and including an exterior surface and an interior surface region that generally faces the lateral side; and metal solder connectors coupling individual first leads to individual second leads. In a further embodiment, the individual second leads have an “L” shape and physically contact corresponding individual first leads. In another embodiment, the individual second leads have a “C” shape and include a tiered portion that projects towards the lateral side of the second casing.
An embodiment package-on-package (PoP) device includes a package structure, a package substrate, and a plurality of connectors bonding the package structure to the package substrate. The package structure includes a logic chip bonded to a memory chip, a molding compound encircling the memory chip, and a plurality of conductive studs extending through the molding compound. The plurality of conductive studs is attached to contact pads on the logic chip.
An optoelectronic component includes an optoelectronic semiconductor chip having a first surface on which a first electrical contact and a second electrical contact are arranged, wherein the first surface adjoins a molded body, a first pin and a second pin are embedded in the molded body and electrically conductively connect to the first contact and the second contact, and a protection diode is embedded in the molded body and electrically conductively connect to the first contact and the second contact.
A method including forming at least one passive structure on a substrate by a build-up process; introducing one or more integrated circuit chips on the substrate; and introducing a molding compound on the at least one passive structure and the one or more integrated circuit chips. A method including forming at least one passive structure on a substrate by a three-dimensional printing process; introducing one or more integrated circuit chips on the substrate; and embedding the at least one passive structure and the one or more integrated circuit chips in a molding compound. An apparatus including a package substrate including at least one three-dimensional printed passive structure and one or more integrated circuit chips embedded in a molding material.
A device comprises a first chip and a second chip stacked together to form a multi-chip structure, wherein the multi-chip structure is embedded in an encapsulation layer, and wherein at least one edge of the first chip and the second chip is exposed outside the encapsulation layer, a redistribution layer on a surface of a first side of the encapsulation layer and a plurality of conductive bumps over the redistribution layer and connected to the redistribution layer.
A method of manufacturing an array of semiconductor device packages includes placing a plurality of semiconductor chips on a temporary carrier, covering the plurality of semiconductor chips with an encapsulation material to form an encapsulation body, providing a plurality of microwave components each including at least one electrically conducting wall structure integrated in the encapsulation body, forming a plurality of electrical interconnects each configured to electrically couple a semiconductor chip and a microwave component, and separating the encapsulation body into single semiconductor device packages each including a semiconductor chip, a microwave component and an electrical interconnect.
Anisotropic conductive film (ACF) structures and manufacturing methods for forming the same are described. The manufacturing methods include preventing clusters of conductive particles from forming between adjacent bonding pads and that are associated with electrical shorting of ACF structures. In some embodiments, the methods involve use of multiple layered ACF materials that include a non-electrically conductive layer that reduces the likelihood of formation of conductive particle clusters between bonding pads. In some embodiment, the methods include the use of ultraviolet sensitive ACF material combined with lithography techniques that eliminate conductive particles from between neighboring bonding pads. In some embodiments, the methods involve the use of insulation spacers that block conductive particles from entering between bonding pads. Any suitable combination of the described methods can be used.
A method of manufacturing a semiconductor substrate includes a device-forming process of forming a plurality of device areas in a substrate section, a first wiring process of forming circuit wirings connected to the plurality of device areas, an electrode pad-forming process of forming a plurality of electrode pads, a second wiring process of forming a potential adjustment wiring electrically connecting at least a part of the electrode pads, an electrode-forming process of forming electrode bodies on the electrode pads by electroless plating after the second wiring process, and a potential adjustment-releasing process of releasing a connection by the potential adjustment wiring after the electrode-forming process.
Consistent with an example embodiment, a semiconductor device comprises a device die having bond pads providing connection to device die circuitry and a QFN half-etched lead frame with a package boundary; the QFN half-etched lead frame has a top-side surface and an under-side surface. The QFN half-etched lead frame includes a sub-structure of I/O terminals and a die attach area, the die attach area facilitating device die attachment thereon and the terminal I/O terminals providing connection to the device die bond pads and additional terminals located about the corners of the sub-structure. An envelope of molding compound encapsulates the device die mounted on the top-side surface of the QFN half-etched lead frame. A RF (radio-frequency) shield layer is on the envelope of the molding compound, the RF shield electrically connected to the additional terminals via conductive connections defined in corresponding locations on the envelope of the molding compound.
On a first wafer surface of a semiconductor wafer, a projection-depression shape is formed. On the first wafer surface, a resin member is so formed to have a resin outer peripheral end positioned away from a wafer outer peripheral end and expose the wafer outer peripheral end. By partially removing the semiconductor wafer, on a second wafer surface of the semiconductor wafer, formed is a recessed shape having a recessed-portion outer peripheral end positioned 0.5 mm or more inside from the resin outer peripheral end. After performing a processing on the second wafer surface, the resin member is removed.
An electronic device includes a middle-of-line (MOL) stack. The electronic device includes a top local interconnect layer and a contact coupling the top local interconnect layer to a gate of a semiconductor device through a first dielectric layer. The electronic device also includes one or more isolation walls between the contact and the first dielectric layer, wherein the one or more isolation walls include aluminum nitride (AlN).
In one example, a method for fabricating an integrated circuit includes patterning a layer of a first conductive metal, via a subtractive etch process, to form a plurality of lines for connecting semiconductor devices on the integrated circuit. A large feature area is formed outside of the plurality of conductive lines via a metal fill process using a second conductive metal.
A semiconductor device of the present invention includes a semiconductor element, a surface electrode formed on a surface of the semiconductor element, a metal film formed on the surface electrode so as to have a joining portion and a stress relieving portion formed so as to border on and surround the joining portion, solder joined to the joining portion while avoiding the stress relieving portion, and an external electrode joined to the joining portion through the solder.
A semiconductor device is provided with a semiconductor element having a plurality of electrodes, a plurality of terminals electrically connected to the plurality of electrodes, and a sealing resin covering the semiconductor element. The sealing resin covers the plurality of terminals such that a bottom surface of the semiconductor element in a thickness direction is exposed. A first terminal, which is one of the plurality of terminals, is disposed in a position that overlaps a first electrode, which is one of the plurality of electrodes, when viewed in the thickness direction. The semiconductor device is provided with a conductive connection member that contacts both the first terminal and the first electrode.
A solution for dissipating heat generated from high power chip packages, e.g., a fcBGA package, wbBGA package, 2.5D/3D TSV package, PoP, etc. The heat dissipation system may include a high power chip package including a high power chip. A micro-jet may be attached to the high power chip. A micro-pump may be in fluidic communication with the micro-jet. A heat exchanger may be in fluidic communication with the micro-pump. The high power chip package is assembled on the same PCB with the micro-pump and the heat exchanger.
A semiconductor device includes two or more semiconductor elements, a lead with island portions on which the semiconductor elements are mounted, a heat dissipation member for dissipating heat from the island portions, a bonding layer bonding the island portions and the heat dissipation member, and a sealing resin covering the semiconductor elements, the island portions and a part of the heat dissipation member. The bonding layer includes mutually spaced individual regions provided for the island portions, respectively.
A heat dissipation package structure includes a substrate, a chip disposed on the substrate and a heat dissipation sheet. The heat dissipation sheet comprises a covering portion disposed on a back surface of the chip, a first lateral covering portion disposed on a first lateral surface of the chip and a first conducting portion disposed on the substrate. The back surface comprises a first width, the covering portion comprises a second width, the chip comprises a thickness, and there is an interval between the chip and the substrate. The second width is not larger than summation of the first width, double the interval and double the thickness for making the chip disposed between the heat dissipation sheet and the substrate is not within a completely sealed space so as to prevent the heat dissipation sheet from deformation and separation from the chip or the substrate cause of air expansion.
Embodiments relate to active devices embedded within printed circuit boards (PCBs). In embodiments, the active devices can comprise at least one die, such as a semiconductor die, and coupling elements for mechanically and electrically coupling the active device with one or more layers of the PCB in which the device is embedded. Embodiments thereby provide easy embedding of active devices in PCBs and inexpensive integration with existing PCB technologies and processes.
A display device includes a display area, a test pad, a plurality of first test transistors, and at least one outline. The display area includes pixels coupled to data lines and scan lines. The test pad receives a test signal. The first test transistors are coupled between the data lines of the display area and the test pad. The at least one outline is coupled between one of the first test transistors and the test pad. The at least one outline is located in a non-display area outside the display area.
Provided are a semiconductor device and a method of fabricating a semiconductor device. The semiconductor device includes a first active fin and a second active fin which protrude from a substrate and extend along a first direction, a first gate structure which is on the first active fin to extend along a second direction intersecting the first direction, a second gate structure which is located adjacent to the first gate structure in the second direction and is on the second active fin to extend along the second direction, and a dummy structure which is in a space between the first gate structure and the second gate structure.
Techniques for STI in fin device structures formed on bulk substrates are provided. In one aspect, a method of forming a fin device in a bulk substrate includes the steps of: forming fins and trenches in between the fins in the bulk substrate; and annealing the bulk substrate in an oxygen ambient under conditions sufficient to form a thermal oxide on sidewalls of the fins and which completely fills the trenches, wherein the thermal oxide forms a STI region between each of the fins. A method of forming a fin device in a bulk substrate is also provided where a deposited STI oxide is used in combination with a thermal oxide. A fin device is also provided.
A method of manufacturing a semiconductor device may include: (a) loading a substrate into a process chamber, the substrate having: a process surface provided with a first metal film containing at least a first metal element; (b) forming a second metal film on the substrate loaded in the process chamber by alternately supplying a metal compound and a first reactive gas reactive with the metal compound to the substrate a plurality of times; (c) alternately performing steps (c-1) and (c-2) a plurality of times wherein the step (c-1) includes: forming an amorphous third metal film on the second metal film, and the step (c-2) includes: forming a fourth metal film on the third metal film; and (d) forming an amorphous fifth metal film on the fourth metal film by supplying the metal compound mixed with the second reactive gas to the substrate.
A method of fabricating a semiconductor device includes etching a semiconductor substrate having a top surface to form a trench having sidewalls and a bottom surface that extends from the top surface into the semiconductor substrate. A dielectric liner of a first dielectric material is formed on the bottom surface and sidewalls of the trench to line the trench. A second dielectric layer of a second dielectric material is deposited to at least partially fill the trench. The second dielectric layer is partially etched to selectively remove the second dielectric layer from an upper portion of the trench while preserving the second dielectric layer on a lower portion of the trench. The trench is filled with a fill material which provides an electrical conductivity that is at least that of a semiconductor.
A transport arm including a holding unit that holds a substrate by vacuum adsorption. The holding unit has an air discharge port and an adsorption member formed so as to surround the air discharge port. The adsorption member is a squeeze packing.
An electronic device and a method of making an electronic device. As non-limiting examples, various aspects of this disclosure provide various methods of making electronic devices, and electronic devices made thereby, that utilize a film assist mold process.
A compact device allows individual or combined correction of wafer probe planarity and orientation misalignment. The device is made as a metallic block or as a strong plastic block and contains three sections, which are held together by a steel blade or by a steel blade and a rotation pin; the sections are split apart for “Phi”—orientation alignment or rotated against each-other for “Theta” planarity alignment. The steel blade provides secure and anti-backlash flexibility both in lateral (“Phi”) and perpendicular (“Theta”) direction. Alternatively the “Theta” alignment can use a rotation shaft or a small part of the original block left over as a bridge joining both sections. The device is inserted between the fixed probe support and the probe itself.
Representative implementations of devices and techniques provide a semiconductor package comprising a laminate substrate. The laminate substrate includes at least one conductive layer laminated to a surface of an insulating core. The laminate substrate also includes one or more die openings, in which one or more semiconductor die are located.
A metal-containing deposit can be efficiently removed. A plasma processing method includes removing a deposit, which adheres to a member within a processing vessel and contains at least one of a transition metal and a base metal, by plasma of a processing gas containing a CxFy gas, in which x is an integer equal to or less than 2 and y is an integer equal to or less than 6, and without containing a chlorine-based gas and a nitrogen-based gas.
A method of forming a sealing structure for a bonded wafer is provided. The method includes providing the lower wafer and the upper wafer, forming a sealing material layer on each of the lower wafer and the upper wafer, forming a mask layer on the sealing material layer on each of the lower wafer and the upper wafer, etching the sealing material layer using the mask layer as an etch mask, so as to form a first protrusion at an edge of the lower wafer and a second protrusion at an edge of the upper wafer, and bonding the first protrusion and the second protrusion together to form the sealing structure. The sealing structure encloses a gap between the lower wafer and the upper wafer at an edge of the bonded wafer, so as to form a hermetically sealed cavity at the edge of the bonded wafer.
Embodiments of the present disclosure provide an apparatus and methods for forming stair-like structures with accurate profiles and dimension control for manufacturing three dimensional (3D) stacked semiconductor devices. In one embodiment, a method of forming stair-like structures on a substrate includes forming a film stack including a dielectric layer and a ruthenium containing material, and etching the ruthenium containing material in the film stack exposed by a patterned photoresist layer utilizing a first etching gas mixture comprising an oxygen containing gas.
The present disclosure provides methods for etching features in a silicon material includes performing a remote plasma process formed from an etching gas mixture including chlorine containing gas to remove a silicon material disposed on a substrate.
A process for forming trenches in a target material includes forming a masking layer onto the target material, where the masking layer comprises a material having high selectivity to a plasma etch gas adapted for etching the target material. A pattern is formed in the masking layer to expose portions of the target material and the sample is placed on an angle mount at a pre-determined angle relative to a cathode of a reactive ion etcher so that the target material is within a plasma dark space of the plasma etch gas. Ballistic ions within the plasma dark space form a trench structure within the target material. The process may further include repeating the steps of positioning the sample and etching the exposed portions of the target material with the substrate at a different angle to define a triangular structure.
A method for performing epitaxial lift-off allowing reuse of a III-V substrate to grow III-V devices is presented. A sample is received comprising a growth substrate with a top surface, a sacrificial layer on the top surface, and a device layer on the sacrificial layer. This substrate is supported inside a container and the container is filled with a wet etchant such that the wet etchant progressively etches away the sacrificial layer and the device layer lifts away from the growth substrate. While filling the container with the wet etchant, the sample is supported in the container such that the top surface of the growth substrate is non-parallel with an uppermost surface of the wet etchant. Performed in this manner, the lift-off process requires little individual setup of the sample, and is capable of batch processing and high throughput.
A method of manufacturing a silicon carbide semiconductor device includes a step of preparing a silicon carbide substrate having a first main surface and a second main surface located opposite to the first main surface, a step of forming a doped region in the silicon carbide substrate by doping the first main surface with an impurity, a step of forming a first protecting film on the doped region at the first main surface, and a step of activating the impurity included in the doped region by annealing with the first protecting film having been formed, the step of forming a first protecting film including a step of disposing a material which will form the first protecting film and in which the concentration of a metal element is less than or equal to 5 μg/kg on the first main surface.
A manufacturing a semiconductor device of the present disclosure includes coating a photosensitive material on a workpiece; exposing the photosensitive material using a first exposure mask; performing a positive-tone development on the photosensitive material using a first developer after the first exposing; exposing the photosensitive material using a second exposure mask after the first developing; and performing a negative-tone development on the photosensitive material using a second developer after the second exposing.
Native oxides and residue are removed from surfaces of a substrate by performing a multiple-stage native oxide cleaning process. In one example, the method for removing native oxides from a substrate includes supplying a first gas mixture including an inert gas onto a surface of a material layer disposed on a substrate into a first processing chamber, wherein the material layer is a III-V group containing layer for a first period of time, supplying a second gas mixture including an inert gas and a hydrogen containing gas onto the surface of the material layer for a second period of time, and supplying a third gas mixture including a hydrogen containing gas to the surface of the material layer while maintaining the substrate at a temperature less than 550 degrees Celsius.
A field effect transistor (FET) and a method to form the FET are disclosed. The FET comprises a channel region comprising a nanosheet layer/sacrificial layer stack. The stack comprises at least one nanosheet layer/sacrificial layer pair. Each nanosheet layer/sacrificial layer pair comprises an end surface. A conductive material layer is formed on the end surface of the pairs, and a source/drain contact is formed on the conductive material layer. In one embodiment, the sacrificial layer of at least one pair further may comprise a low-k dielectric material proximate to the end surface of the pair. A surface of the low-k dielectric material proximate to the end surface of the pair is in substantial alignment with the end surface of the nanosheet layer. Alternatively, the surface of the low-k dielectric material proximate to the end surface of the pair is recessed with respect to the end surface of the nanosheet layer.
GaN based nanowires are used to grow high quality, discreet base elements with c-plane top surface for fabrication of various semiconductor devices, such as diodes and transistors for power electronics.
In a particular aspect, an integrated circuit includes a first gate structure coupled to a first fin field effect transistor (FinFET) device. The integrated circuit includes a second gate structure coupled to a second FinFET device. The first gate structure and the second gate structure are separated by a dielectric region. The integrated circuit further includes a metal contact having a first surface that is in contact with the dielectric region, the first gate structure, and the second gate structure.
The invention describes an electrode (1) for use in a lamp (3) comprising a quartz glass envelope (30) enclosing a chamber (31), which electrode (1) comprises a tip for extending into the chamber (31) and base for embedding in a sealed portion (33) of the quartz glass envelope (30), characterized in that the base comprises a plurality of essentially smooth concave channels (2) arranged around the body of the electrode (2) and wherein the depth (dch) of a channel (2) is preferably at most 8 percent, more preferably at most 5 percent, most preferably at most 3 percent of a diameter (De) of the electrode (2). The invention further describes a method of manufacturing an electrode (1) for use in a lamp (3) comprising a chamber (11) in a quartz glass envelope (30), which method comprises the step of removing material from the body of the electrode (1) to form a plurality of channels (2) around the body of the electrode such that a channel (2) comprises channel side walls (62) and an essentially concave channel floor (60), and such that depth (dch) of a channel (2) is preferably at most 8 percent, more preferably at most 5 percent, most preferably at most 3 percent of a diameter (De) of the electrode (2). The invention also describes a lamp (3) comprising such electrodes (1), and a method of manufacturing such a lamp (3).
An ion trap is disclosed comprising a plurality of elongate electrodes aligned with one another and with a central longitudinal axis along respective longitudinal axes and that are spaced apart from one another and disposed about a central longitudinal axis to form a quadrupole. The ion trap further comprises an elongate electrode that is aligned with and disposed along the central longitudinal axis, and circuitry coupled to the outer electrodes is suitable for driving the central and outer electrodes to selectively trap of ions within a region defined between the central electrode and the outer.
A basic ion optical system having a guaranteed capability for the temporal focusing of ions, including sector-shaped electrodes, an injection slit and an ejection slit, is arranged on the same plane. Four or more sets of the basic ion optical systems are arrayed at predetermined intervals in a direction substantially orthogonal to the aforementioned plane. The injection slit on a topmost basic ion optical system plane and the ejection slit on a basic ion optical system plane located immediate below, as well as the injection slit on a bottommost basic ion optical system plane and the ejection slit on a basic ion optical system plane located immediate above, are respectively connected by another type of basic ion optical system having a guaranteed capability for the temporal focusing of ions. The other injection slits and ejection slits are respectively connected by another type of basic ion optical system having a guaranteed capability for the temporal focusing of ions. Thus, a loop orbit having a three-dimensionally deformed figure “8”-shape is formed, whereby the flight distance is elongated while ensuring the temporal focusing of the ions for the entire system, simultaneously with utilizing the three-dimensional space to compactify the ion optical system.
Ion optics devices and related methods of making and using the same are disclosed herein that generally involve forming a plurality of electrode structures on a single substrate. An aspect ratio of the structures relative to a plurality of recesses which separate the structures can be selected so as to substantially prevent ions passing through the finished device from contacting exposed, electrically-insulating portions of the substrate. The substrate material can be a material that is relatively inexpensive and easy to machine into complex shapes with high precision (e.g., a printed circuit board material). In some embodiments, discrete ion optical elements are disclosed which can be formed from a core material to which an electrically-conductive coating is applied, the core material being relatively inexpensive and easy to machine with high precision. The coating can be configured to substantially prevent outgassing from the core under the vacuum conditions typically experienced in a mass spectrometer.
Plasma processing apparatus and methods are disclosed. Embodiments of the present disclosure include a processing chamber having an interior space operable to receive a process gas, a substrate holder in the interior of the processing chamber operable to hold a substrate, and at least one dielectric window. A metal shield is disposed adjacent the dielectric window. The metal shield can have a peripheral portion and a central portion. The processing apparatus includes a primary inductive element disposed external to the processing chamber adjacent the peripheral portion of the metal shield. The processing apparatus can further include a secondary inductive element disposed between the central portion of the metal shield and the dielectric window. The primary and secondary inductive elements can perform different functions, can have different structural configurations, and can be operated at different frequencies.
The invention relates to a charged particle lithography system for exposing a target. The system includes a charged particle beam generator for generating a charged particle beam; an aperture array (6) for forming a plurality of beamlets from the charged particle beam; and a beamlet projector (12) for projecting the beamlets onto a surface of the target. The charged particle beam generator includes a charged particle source (3) for generating a diverging charged particle beam; a collimator system (5a,5b,5c,5d; 72;300) for refracting the diverging charged particle beam; and a cooling arrangement (203) for removing heat from the collimator system, the cooling arrangement comprising a body surrounding at least a portion of the collimator system.
The disclosure provides a scanning particle beam microscope for inspecting an object. The scanning particle beam microscope includes a particle optical system having an objective lens. The microscope further includes a detector system having a particle optical detector component configured to generate an electrostatic field in the beam path of particles emitted from the object. The detector system is configured to spatially filter the emitted particles after the emitted particles have passed through the electrostatic field and to detect a portion of the filtered emitted particles. The particle optical detector component is configured such that the spatial filtering filters the emitted particles according to a kinetic energy of the emitted particles.
An X-ray source with optical indication of radiation, which can be used in various measuring devices for parameters control and visualization of structure of industrial and biological objects, is proposed. The source comprises a vacuum housing, an anode irradiated by electrons and generating the divergent flux of radiation, an exit window for X-ray radiation, means for optical indication of X-ray radiation beam including a source of optical radiation and an optical mirror. The anode is made composite in the form of a thin film and a radiolucent substrate luminescent in the optical range. The anode structure is an exit window of the source, and behind it the coaxially arranged means of collimation and focusing of X-ray and optical radiation and means of optical visualization of X-ray focus are mounted. The proposed device significantly increases the accuracy and informativity of optical indication of X-ray radiation parameters.
To provide a magnetron improved in high efficiency and load stability while suppressing costs. By shortening the height of vane Vh so that the ratio of the height of vane Vh to a gap between end hats EHg (EHg/Vh) satisfies a condition 1.12≦EHg/Vh≦1.26, an input side pole piece-vane gap IPpvg becomes larger than an output side pole piece-vane gap OPpvg, and an input side end hat-vane gap IPevg becomes larger than an output side end hat-vane gap OPevg, load stability at high efficiency can be improved while shortening the height of vane Vh. Therefore, it is possible to provide a magnetron improved in high efficiency and load stability while suppressing costs.
A slot motor is for an electrical switching apparatus. The slot motor includes: a support apparatus including a support element having a first leg and a second leg located opposite the first leg, the first leg having a first inner surface, the second leg having a second inner surface facing the first inner surface; a plurality of permanent magnets including a first permanent magnet and a second permanent magnet, the first permanent magnet being located on the first leg, the second permanent magnet being located on the second leg; and a number of U-shaped plates coupled to the support element. The first inner surface and the second inner surface are located between the first permanent magnet and the second permanent magnet.
A battery switch including a selector supported by a housing and rotatably mounted to the housing. The selector having four positions, including, a first position in which a first and second bank terminals are disconnected from a first and second load terminals, a second position in which the first bank terminal is connected to the first load terminal and the second bank terminal is disconnected from the second load terminal, a third position in which the first bank terminal is connected to the first load terminal, the second bank terminal is connected to the second load terminal, and the first bank terminal is disconnected from the second bank terminal, and a fourth position in which the first bank terminal is connected to the first load terminal and the second bank terminal and the second bank terminal is connected to the second load terminal.
A luminous keyboard includes a lateral-emitting type illumination element, a light guide panel, a sensing circuit pattern, a light-transmissible substrate, a supporting plate, and plural keys. When one of the keys is moved toward the sensing circuit pattern, the sensing circuit pattern generates a corresponding non-contact key signal. The lateral-emitting type illumination element is used for providing a light beam to the light guide panel. Consequently, the light beam can be diffused to the whole light guide panel. The light guide panel has plural light-guiding dots for collecting and scattering the light beam. The light-transmissible substrate is arranged between the light guide panel and the plural keys, and has plural light diffusion structures corresponding to the plural keys. The light beam scattered upwardly by each light-guiding dot is sequentially transmitted through the corresponding light diffusion structure and the supporting plate and directed to the corresponding key.
Electronic switching device having a housing in which at least one printed circuit board with circuit parts is arranged, the housing being designed with at least one housing cover, which closes a housing opening, and with a cable bushing for a connection cable and being provided with a filling made of a plastic material which surrounds the printed circuit board with circuit parts, wherein the printed circuit board (2) is encapsulated in the housing (1) in a supported manner on a grid-like carrier body (6), to which end the grid-like carrier body (6) has individual supports (7) which span an adjustment plane (X) depending on heights (Y) of the supports (7) and on which the printed circuit board (2) can be fixed at a distance from the housing walls (8, 9, 10) for a localized arrangement of the encapsulated circuit parts in the housing (1).
To provide a capacitor capable of having a larger capacity than a case where only a solid electrolyte is simply used as a dielectric material of the capacitor. The capacitor (1) includes a solid electrolytic body (3) and a plurality of electrodes (5, 7) which is formed on the solid electrolytic body (3) and disposed opposite to each other with the solid electrolytic body (3) interposed therebetween, and the solid electrolytic body (3) includes an oxide-based lithium ion conductive solid electrolyte as a base material and contains oxide particles formed of a part of elements configuring the base material.
A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
In a laminated capacitor, a distance between an inner internal electrode at a first principal surface side, from a pair of internal electrodes that sandwich an effective dielectric layer located closest to a second principal surface side in a first sub-electrostatic capacitance portion, and a second principal surface is smaller than or equal to a distance between an internal electrode located closest to the second principal surface side in a main electrostatic capacitance portion and the inner internal electrode.
A method for producing an electronic component including a laminate, a circuit element provided therein, and external conductors electrically connected thereto. The method including steps of obtaining a mother laminate that has a plurality of the laminates arranged in a matrix-like state in a first direction and a second direction perpendicular thereto. The mother laminate is cut into the laminates. In the step of obtaining, the mother laminate is obtained such that the external conductors of two laminates adjacent in the first direction are joined, and circuit elements provided in the two laminates have a point-symmetrical relationship with each other. In the step of cutting, the mother laminate is cut along first cutoff lines extending in the second direction after the mother laminate is cut along second cutoff lines extending in the first direction. The external conductors are located on corresponding first cutoff lines.
An inductive power transfer (IPT system) includes an AC-AC full-bridge converter (Tp1-Tp4) provided between the primary conductive path (Lpt) and an alternating current power supply (Vin). The system may include a controller for controlling the pick-up device to shape the input current drawn from the alternating current power supply (Vin).
A shielded electrical cable includes conductor sets extending along a length of the cable and spaced apart from each other along a width of the cable. First and second shielding films are disposed on opposite sides of the cable and include cover portions and pinched portions arranged such that, in transverse cross section, the cover portions of the films in combination substantially surround each conductor set. An adhesive layer bonds the shielding films together in the pinched portions of the cable. A transverse bending of the cable at a cable location of no more than 180 degrees over an inner radius of at most 2 mm causes a cable impedance of the selected insulated conductor proximate the cable location to vary by no more than 2 percent from an initial cable impedance measured at the cable location in an unbent configuration.
A PTC composition comprises crystalline polymer and conductive filler. The conductive filler comprises tungsten carbide powder dispersed in the crystalline polymer, and the tungsten carbide powder comprises impurity of less than 7% by weight. The impurity comprises the materials other than tungsten monocarbide.
A fabrication method of burnable absorber nuclear fuel pellets and burnable absorber nuclear fuel pellets fabricated by the same are provided, in which the fabrication method includes adding boron compound and manganese compound to one or more type of nuclear fuel powders selected from the group consisting of uranium dioxide (UO2), plutonium dioxide (PuO2) and thorium dioxide (ThO2) and mixing the same (step 1), compacting the mixed powder of step 1 into compacts (step 2), and sintering the compacts of step 2 under hydrogen atmosphere (step 3). According to the fabrication method, sintering can be performed under hydrogen atmosphere at a temperature lower than the hydrogen atmosphere sintering that is conventionally applied in the nuclear fuel sintered pellet mass production, by adding sintering additives such as manganese oxide or the like.
A pillar-shaped semiconductor memory device includes Si pillars arranged in at least two rows; a tunnel insulating layer; a data charge storage insulating layer; first, second, and third interlayer insulating layers; and first and second conductor layers, all of which surround outer peripheries of the Si pillars, the first and second conductor layers being located at the same height in a perpendicular direction. A row of the semiconductor pillars is interposed between the first and second conductor layers of Si pillars arranged in an X direction. Shapes of the first and second conductor layers facing the semiconductor pillars are circular arcs. Adjacent circular arcs of the first conductor layer are in contact with each other, and adjacent circular arcs of the second conductor layer are in contact with each other. A pitch length of the Si pillars in the X direction is smaller than that in a Y direction.
A computing device includes a memory array built of several sections having memory cells arranged in rows and column, at least one cell in each column of the memory array being connected to a bit line; and at least one multiplexer to connect a bit line in a first column of a first section to a bit line in a second column in a second section different from the first section, where the second column is not continuous with the first column ; and a decoder to activate at least two word lines of the first section and a word line connected to a cell in the second column in the second section to write a bit line voltage associated with a result of a logical operation performed on the first column into the cell in the second column.
A memory device includes memory cell array and an address decoder. The memory cell array includes a normal memory region and a redundant memory region. The normal memory region operates in response to data signal and plurality of normal memory region signals. The redundant memory region operates in response to data signal and plurality of redundant memory region signals. The address decoder includes normal memory region signal generator and redundant memory region signal generator. The normal memory region signal generator activates first normal memory region signals and redundant memory region signal generator activates first redundant memory region signal simultaneously when address decoder operates in test mode. First normal memory region signals correspond to an address signal and are included in plurality of normal memory region signals. A first redundant memory region signal corresponds to an address signal and is included in the plurality of redundant memory region signals.
According to one embodiment, a memory system includes a nonvolatile semiconductor memory and a memory controller. The memory controller has a first signal generation section that generates a first signal related with a read voltage used for read operation of the nonvolatile semiconductor memory, a second signal generation section that generates a second signal that specifies the temperature coefficient used for the correction for temperature of the read voltage, and a first interface section that outputs the first signal, the second signal and a read command. The nonvolatile semiconductor memory has a word line, a memory cell array includes memory cells connected to the word line, and a second interface section that receives the first signal, the second signal and the read command.
Techniques are presented to determine whether a multi-state memory device suffers has a write operation aborted prior to its completion. In an example where all the word lines of a memory block is first programmed to an intermediate level (such as 2 bits per cells) before then being fully written (such as 4 bits per cell), after determining that intermediate programming pass completed, the block is searched using the read level for the highest multi-state to find the last fully programmed word line, after which the next word line is checked with the lowest state's read level to determine whether the full programming had begun on this word line. In an example where each word line is fully written before beginning the next word line of the block, after determining the first erased word line, the preceding word line is checked as the highest state to see if programming completed and, if not, checked at the lowest read level to see if programming began.
One embodiment describes a memory cell. The memory cell includes a phase hysteretic magnetic Josephson junction (PHMJJ) that is configured to store one of a first binary logic state corresponding to a binary logic-1 state and a second binary logic state corresponding to a binary logic-0 state in response to a write current that is provided to the memory cell and to generate a superconducting phase based on the stored digital state. The memory cell also includes a superconducting read-select device that is configured to implement a read operation in response to a read current that is provided to the memory cell. The memory cell further includes at least one Josephson junction configured to provide an output based on the superconducting phase of the PHMJJ during the read operation, the output corresponding to the stored digital state.
The access speeds of new memory technologies may not be compatible with product specifications of existing memory technologies such as DRAM, SRAM, and FLASH technologies. Their electrical parameters and behaviors are different such that they cannot meet existing memory core specifications without new architectures and designs to overcome their limitations. New memories such as STT-MRAM, Resistive-RAM, Phase-Change RAM, and a new class of memory called Vertical Layer Thyristor (VLT) RAM requires new read sensing and write circuits incorporating new voltage or current levels and timing controls to make these memory technologies work in today's systems. Systems and methods are provided for rendering the memory cores of these technologies transparent to existing peripheral logic so that they can be easily integrated.
A complementary lateral bipolar SRAM device and method of operating. The device includes: a first set and second set of lateral bipolar transistors forming a respective first inverter device and second inverter device, the first and second inverter devices being cross-coupled for storing a logic state. In each said first and second set, a first bipolar transistor is an PNP type bipolar transistor, and a second bipolar transistor is an NPN type bipolar transistor, each said NPN type bipolar transistor having a base terminal, a first emitter terminal, a second emitter terminal, and a collector terminal. Emitter terminals of the PNP type transistors of each first and second inverter devices are electrically coupled together and receive a first applied wordline voltage. The first emitter terminals of each said NPN transistors of said first inverter and second inverter devices are electrically coupled together and receive a second applied voltage. The second emitter terminal of one NPN bipolar transistor of said first inverter is electrically coupled to a first bit line conductor, and the second emitter terminal of the NPN bipolar transistor of said second inverter device is electrically coupled to a second bit line.
A memory device includes a common data bus, a plurality of memory banks and a control circuit. The memory banks are coupled to the common data bus. The memory banks share the common data bus. Each of the memory banks includes a storage device and a data register. The data register is coupled between the storage device the common data bus, and is arranged for storing data read from the storage device. The control circuit is coupled to storage devices and data registers of the memory banks, and is arranged for referring to an address signal and an access signal to control the storage device of said each memory bank to output the data to the corresponding data register, and referring to the address signal and a programmable latency time to control the data registers to output data from the memory banks to the common data bus.
A storage device, comprising at least one spintronic element suitable for representing a state among at least n states associated with the spintronic element, n>1, characterized in that each of the n states is associated with at least one characteristic of a group of magnetic skyrmions in the spintronic element, and in that said characteristic associated with a state n oi is different from said characteristic associated with a state n oj when the states n oi and n oj are two different states among the n states.
Apparatuses for voltage level control in a semiconductor device are described. An example apparatus includes: a plurality of circuits coupled in parallel between first and second nodes, the first node being supplied with a first voltage; and a voltage supply circuit that supplies the second node with one of second and third voltages, the first voltage being greater than the second voltage, and the second voltage being greater than the third voltage. The plurality of circuits includes a first circuit including a transistor coupled to the second node. The first circuit activates the transistor responsive to a first control signal and further sets a voltage level of the second node higher than the second voltage after the voltage supply circuit supplies the second nodes with the second voltage.
A method comprises storing a first laser current value in response to a photodetector sensing that a threshold current for a laser diode of a HAMR head has been reached, the photodetector situated proximate the laser diode. The method also comprises storing a second laser current value in response to a sensor sensing that the threshold current for the laser diode has been reached, the sensor situated away from the laser diode. The method further comprises determining a difference (delta) between the first and second laser current values, repeating the storing and determining processes during subsequent use of the laser diode, and detecting a change in the delta indicative of a malfunction of the head.
Computer-implemented methods and systems for creating non-interactive, linear video from video segments in a video tree. Selectably presentable video segments are stored in a memory, with each segment representing a predefined portion of one or more paths in a traversable video tree. A linear, non-interactive video is automatically created from the selectably presentable video segments by traversing at least a portion of a first path in the video tree and, upon completion, is provided to a viewer for playback.
Metadata defining decoding and rendering instructions for media content to be co-rendered in a media presentation is divided and distributed as track fragments provided in different media container files. Track fragment adjustment information is included in at least one such track fragment in order to define rendering timing relationships between media content portions defined by the track fragments in a current media container file. The rendering timing relationships enable a correct time alignment of the playback of the media content to be co-rendered to achieve a synchronized media presentation. The track fragment adjustment information is particularly advantageous in connection with tuning in or a random access in a stream of media container files comprising fragmented metadata.
A data storage device having a housing member for a selected one of a 3½ inch form factor hard disc drive (HDD) or a 2½ inch form factor HDD. A spindle motor coupled to the housing member supports a rotatable data recording disc with a plurality of data tracks and an outermost perimeter. The outermost perimeter has an average overall radius of 48.5 millimeters, mm responsive to the housing member being for a 3½ inch form factor HDD or an average overall radius of 33.5 mm responsive to the housing member being for a 2½ inch form factor HDD. The rotatable data recording disc further has an outermost data track at an average selected radius such that the difference between the average overall radius of the outermost perimeter and the average selected radius is more than 1 mm.
A tape head module for performing azimuth recording and reading of tape media (e.g., where data bands are disposed at an angle to the direction of media travel) to increase the storage density of tape media. An array of read and/or write elements of the tape head module is oriented along an axis different than those of first and second lateral (e.g., overwrapped) edges of the tape head module. Positioning the first and second lateral edges of the disclosed tape head module to be perpendicular to the direction of tape motion (e.g., so that the tape moves over the first and second lateral edges perpendicularly to the first and second lateral edges) automatically positions the array of read and/or write elements at an azimuth angle (e.g., non-perpendicular angle) to the direction of tape motion. Also disclosed are methods for fabricating such tape head modules and related tape head assemblies.
A computer-implemented method performed by an electronic data processing apparatus to implement a suggestion engine, comprising: configuring a variable, which is independent from an attribute associated with content of a digital audio recording featuring one or more human voices, by: defining a quality score impact function characterizing a plurality of weight values having a maximum in a central band and tapering away in one or two respective bands adjacent to the central band maximum to produce a range of weight values, and defining a scale setting a minimum and a maximum range of values for the variable corresponding to the range of weight values.
A dataset representing repeated sounds within a musical composition recorded on an audio track may be constructed. An audio track duration of an audio track may be partitioned into partitions of a partition size. A current partition may be compared to remaining partitions of the audio track. Audio information for the current partition may be correlated to audio information for remaining partitions to determine a correlated partition for the current partition from among the remaining partitions of the track duration. The correlated partition determined may be identified as most likely to represent the same sound as the current partition. This comparison process may be performed iteratively, for individual ones of the remaining partitions. Correlation results of the comparison process may be recorded to represent the partition time period of the correlated partition as a function of partition time period of the current partition.
Systems and methods are configured to process audio signals to identify content-types. Audio content is received at an audio decoder which decodes the audio content. The decoded audio content is segmented into frames by applying a windowing function to a given audio frame using a window having a time width related to a delay time of the decoder. A power spectrum estimate of a given frame is determined. A mel filter bank is applied to the power spectrum of the frame. A DCT matrix is applied to filter bank energies to generate a DCT output. A log of the DCT output is used to generate a mel coefficient 1. A threshold for the content is dynamically determined. The mel coefficient 1 and the dynamically determined threshold are used to detect a near silence between content-types and to identify the content-types.
Features are disclosed for using an artificial neural network to generate customized speech recognition models during the speech recognition process. By dynamically generating the speech recognition models during the speech recognition process, the models can be customized based on the specific context of individual frames within the audio data currently being processed. In this way, dependencies between frames in the current sequence can form the basis of the models used to score individual frames of the current sequence. Thus, each frame of the current sequence (or some subset thereof) may be scored using one or more models customized for the particular frame in context.
An echo suppression device includes a processor; and a memory which stores a plurality of instructions, which when executed by the processor, cause the processor to execute: generating a corrected sound signal by suppressing an echo signal representing an echo generated by collecting, by a sound input unit, a sound arising from a reproduction sound signal reproduced by a sound output unit; obtaining a gain to attenuate the corrected sound signal according to a degree of distortion of the echo signal with which intensity of the echo signal non-linearly changes with respect to an intensity change of the reproduction sound signal; and suppressing the corrected sound signal according to the gain.
An apparatus and method are disclosed for filtering and performing high frequency reconstruction of an audio signal. The apparatus includes an analysis filter bank, a phase shifter, a high frequency reconstructor, and a synthesis filter bank. The analysis filterbank receives real-valued time domain input audio samples and generates complex valued subband samples. The phase shifter shifts a phase of the complex-valued subband samples by an arbitrary amount. The high frequency reconstructor modifies at least some of the complex valued subband samples. A phase shifter unshifts a phase of the modified complex-valued subband samples by the arbitrary amount. The synthesis filter bank receives the modified complex valued subband samples and generates time domain output audio samples. The analysis filter bank comprises analysis filters that are complex exponential modulated versions of a prototype filter with an arbitrary phase shift.
An apparatus for downmixing three or more audio input channels to obtain two or more audio output channels is provided. The apparatus includes a receiving interface for receiving the three or more audio input channels and for receiving side information. Moreover, the apparatus includes a downmixer for downmixing the three or more audio input channels depending on the side information to obtain the two or more audio output channels. The number of the audio output channels is smaller than the number of the audio input channels. The side information indicates a characteristic of at least one of the three or more audio input channels, or a characteristic of one or more sound waves recorded within the one or more audio input channels, or a characteristic of one or more sound sources which emitted one or more sound waves recorded within the one or more audio input channels.
A wireless photographic device is provided along with a voice setup method therefor: Obtain at least one wireless network identifier according to a first voice command; synthesize and play a first machine voice according to the obtained wireless network identifier; determine, according to a second voice command, whether to utilize the obtained wireless network identifier on the wireless photographic device. The present invention discloses a simplified wireless LAN setup procedure, using only a wireless interface and a voice man-machine interface and unassisted by any auxiliary equipment. The synthesized voice feedback ensures validity of the setup data. If the man-machine interface processes only digits, alphabetic letters, and set commands, the cost for manufacturing the wireless photographic device is further reduced.
An embodiment provides a method, including: accepting, at an audio receiver of an information handling device, voice input of a user; interpreting, using a processor, the voice input; thereafter receiving, at the audio receiver, repeated voice input of the user; identifying a correction using the repeated voice input; and correcting, using the processor, the voice input using the repeated voice input, wherein the corrective voice input does not include a predetermined voice command. Other aspects are described and claimed.
Provided is an audio processing device including a narration canceling section configured to generate a narration canceling signal by removing a narration component from an input signal, and a reverberation adding section configured to add a reverberation effect to the narration canceling signal.
An acoustic reflector comprises a shell surrounding a solid elastomeric core free of joints. The shell transmits acoustic waves incident on the surface of the shell partially into the core to be focused and reflected from an area of the shell located opposite to the area of incidence so as to provide a reflected acoustic signal output from the reflectorpartially around the circumference of the shell and to combine constructively with the reflected acoustic signal output. The ratio of the speed of sound wave transmission in the shell to the average speed of the wave transmission in the core is preferably in the range of 2.74 to 3.4 best results being in the range of 2.74 to 2.86 inclusive.
A method of enabling a hearer to hear desired sound while also being able to be aware of ambient sound, comprises providing a first non-sound signal representative of said desired sound, deriving a second non-sound signal from said ambient sound, combining the first and second non-sound signals in providing a third non-sound signal, and converting said third non-sound signal into sound.
An electronic musical instrument includes: a contact sensor that generates lip detection information from an operation by a performer; and a controller that derives a lip contact area from the lip detection information generated by the contact sensor, and performs musical note control of an electronic sound source in accordance with the derived lip contact area.
The invention relates to a device for altering the tension of the strings of a stringed musical instrument, of the type comprising a structural element, with at least one element for securing to the body of the instrument, said structural element comprising at least two runners each secured to at least one string of the instrument, and an actuation mechanism for actuating the runners in order to alter the tension of the strings of the instrument, comprising at least one slide carriage that can be moved by the action of at least one lever.
A method, computer program product, and system for automatically tuning a stringed instrument. An initial height of a first string of an instrument having a plurality of strings and a floating bridge is determined. The height of the plurality of strings is determined using a bridge sensor. The floating bridge is locked. A frequency of the first string is analyzed. In response to determining the frequency of the first string does not match a predetermined frequency, a tuning peg servo motor to adjust a tuning peg, thereby adjusting a string tension of the first string. The one or more bridge servo motors adjusts a spring tension until the spring tension of the one or more springs equals the string tension of the first string. In response to determining the first string is tuned, the floating bridge is unlocked.
To prevent tearing in a case where image data is compressed to be written into a frame memory, the present invention includes (i) a compression section (33) for compressing image data for a single frame, the image data being transferred from a host processor (2), and writing the image data into a frame memory (31), (ii) an expansion section for reading image data, expanding the image data, and transferring the image data to an LCD (4), and (iii) a delay control section (32) for, until an inhibit time period Ts passes after the start of reading image data for a first frame, inhibiting the start of writing image data.
A travel path analysis support device includes a processor that executes a procedure. The procedure includes: performing, in accordance with a selected first display color control, change control of display colors of respective regions obtained by mesh-dividing within the geographic region according to a time-wise change in a number of vehicles that pass through the respective regions; when an instruction for enlarged display of a partial region inside the geographic region is received at as given timing of a procedure by which display colors of the respective regions are changed by the change control, displaying the partial region enlarged, and selecting a second display color control based on a total number of vehicles that have entered the partial region within the time range since the given timing; and performing, in accordance with the selected second display color control, change control of the display colors of the respective regions.
An optical device (100) includes a first substrate (10) and a second substrate (20), and an optical layer (30) interposed therebetween. The first substrate includes a first electrode (11) and a second electrode (12), and the second substrate includes a third electrode (21). The optical layer contains a medium (31) and anisotropically-shaped particles (32) whose alignment direction changes in accordance with the direction of an electric field applied to the optical layer. The first electrode and the second electrode, which are interdigitated electrodes, are disposed so that their respective branches (11a, 12a) mesh with one another via a predetermined interspace. The relationships w1
A display device is disclosed. The device includes a display panel including a plurality of pixels including a first pixel electrically connected to a first data line and a second pixel electrically connected to a second data line. The display device also includes a current path switch configured to electrically connect the first pixel to the second pixel during a voltage drop test operation and electrically disconnect the first pixel from the second pixel during an image display operation. The display device further includes a voltage drop detector electrically connected to an end of the first data line and an end of the second data line, the voltage drop detector being configured to apply a test voltage to the end of the first data line and measure a dropped test voltage at the end of the second data line. The display device additionally includes a line resistance calculator.
Architecture and designs of display devices are described, where the display devices possesses high spatial resolution as well as high intensity resolution and may be readily used in various projection applications, storage and optical communications. According to one aspect of the present invention, a display device includes an array of image elements, each of the image elements further includes an array of sub-image elements. These sub-image elements are driven by PWM as in digital modulation. A portion of an image element area, namely some of the sub-image elements, is turned on, which has the same perceived effect of turning on an entire image element for a specific time. In addition, various designs of an image element or a sub-image element are described.
According to the method of the present invention for providing a foreign language acquisition and learning service based on context awareness by using a smart device, a service provider server receives user information from a user terminal, extracts foreign language learning content by using the user information, and transmits same to the user terminal, thereby providing the foreign language learning content that is tailored to the context of the user and the information of the user.
Computer-implemented systems and methods are provided for automatically scoring the content of moderately predictable responses. For example, a computer performing the content scoring analysis can receive a response (either in text or spoken form) to a prompt. The computer can determine the content correctness of the response by analyzing one or more content features. One of the content features is analyzed by applying one or more regular expressions, determined based on training responses associated with the prompt. Another content feature is analyzed by applying one or more context free grammars, determined based on training responses associated with the prompt. Another content feature is analyzed by applying a keyword list, determined based on the test prompt eliciting the response and/or stimulus material. Another content feature is analyzed by applying one or more probabilistic n-gram models, determined based on training responses associated with the prompt. Another content feature is analyzed by comparing a POS response vector, determined based on the response, to one or more POS training vectors, determined based on training responses associated with the prompt. Another content feature is analyzed by comparing a response n-gram count to one or more training n-gram counts using an n-gram matching evaluation metric (e.g., BLEU). Another content feature is analyzed by comparing the response to one to training responses associated with the prompt using a dissimilarity metric (e.g., edit distance and word error rate).
Embodiments of the present invention include devices and methods for monitoring a drone(s). The method includes: receiving information of a drone via a communication unit and displaying the information of the drone on a display panel of a device. The information includes the location of the drone and an icon indicating the location of the drone is displayed on a map rendered on the display panel. The method further includes determining, based on the information, whether the drone poses a danger and, responsive to the danger, issuing a warning of the danger.
A vehicle guidance system (VGS) facilitates interaction between human operated vehicles (HOV), autonomous driverless vehicles (ADV), and/or semi-autonomous vehicles, on the roadway, allowing safe interface with each other and with other elements, for example, weather conditions, traffic control systems, road conditions, obstructions that enter the roadway (people, rocks, animals, debris falling onto roadway from other vehicles), etc. The system provides guidance, communication, and control for the vehicles on the roadway, by using a solar-powered system comprising post assemblies having solar panel(s), sensors, forward and/or downward lighting, and other indicators/alarms to signal to the vehicle or driver regarding road, bridge, weather, accident, speeding, or other conditions of concern in the vicinity for safety and/or operability of the vehicle/driver(s).
Systems and methods are provided for systematically penalizing drivers who fail to stop at crosswalk on different circumstances. The system and method generally employ a sensor to detect a vehicle approaching the cross walk and ambient conditions. The sensor may collect information about the speed and any changes in speed of the vehicle approaching. An image capture device may be used to identify any passengers waiting to cross or actively crossing within the crosswalk. The analyzer processes the information and determines if a fine should be levied upon the vehicle approaching the cross walk. The analyzer may also determine the magnitude of the fine that is to be issued. An additional camera for sensing vehicle speed may be placed at the cross walk to obtain further information to properly assess a fine.
The present invention includes a security-monitoring platform adapted to automatically create associations between electronic monitoring security devices and security alerts on the fly. As alerts occur, the security-monitoring platform operator may select one or more electronic monitoring security devices to aid in processing the security alert, and the security-monitoring platform automatically identifies the selected electronic monitoring security device(s) and creates an association between the selected electronic monitoring security device(s) and the security alert. The security-monitoring platform will then automatically display the associated electronic monitoring security device to the operator when that same security alert is subsequently triggered.
A sound amplification apparatus includes one or more microphones that convert collected sound into an audio signal and transmit the audio signal by radio and a sound receiving apparatus that receives the audio signal transmitted from the microphone and amplifies and outputs the sound based on the audio signal. The sound receiving apparatus is configured to perform sound output control in an emergency mode upon receiving an emergency signal transmitted in response to operation of an emergency switch of the microphone. With this configuration, it is possible to perform appropriate sound control in a dangerous situation such as intrusion of a suspicious person.
A system and method for transmitting information using first and second wireless communication protocols, including an object having a short range radio frequency signal transmitter for transmitting a signal using the first protocol, the signal including information transmitted from the object; a collector including a signal receiver for receiving the signal transmitted by the short range radio frequency transmitter and further including a collector transmitter that transmits a collector signal using the second protocol via a low power wide area network, the collector signal including the information transmitted from the object; a gateway in wireless communication with the collector via the low power wide area network, the gateway including a gateway receiver for receiving the collector signal; a processing application for processing the information transmitted from the object and creating an information processing outcome; and an end user terminal having an interface for displaying the information processing outcome.
The present disclosure is generally directed to systems and methods for providing haptic effects based on information complementary to multimedia content. For example, one disclosed method includes the steps of receiving multimedia data comprising multimedia content and complementary data, wherein the complementary data describes the multimedia content, determining a haptic effect based at least in part on the complementary data, and outputting the haptic effect while playing the multimedia content.
A method and system for a lotto-style game is provided in which a single random number, in a universe of 1-100, is generated and corresponds to a specific pre-numbered box in a two dimensional grid. This box will represent a lotto player's score related to a specific sporting game and date selected by the player. Random numbers will be generated each time a player purchases a ticket based on the date, and teams (game) chosen by the player. A system for playing a lottery game is also provided.
To bring the excitement to the people (majority, who are not experts in games), we present the examples, described here, for one person to be able to bet on and be part of the deal and excitement for a third party, as his agent, proxy, or shadow, to bet for him, or instead of him, or as if the first person was doing the game directly, or one betting for another, or one playing for another with the other person's money. That generates more excitement on the game or casino, with more participation, transactions, income, profit, loyalty, and repeat customers. This brings a lot of variations on the game, e.g., stock market model, or derivatives model, or hedge model. This can be applied to sports and table games or fantasy sports. This can be applied to online, real, mobile, fantasy, simulation, computer generated, human based, or casino games or settings.
A modified gaming machine includes a plurality of gaming machine peripheral devices for use in implementing one or more games to a player, and a master gaming controller configured to implement primary gaming machine functionality, including generating and transmitting information to the plurality of gaming machine peripherals. The modified gaming machine further comprises a secondary controller interposed between one or more of the plurality of gaming machine peripheral devices and the master gaming controller, whereby the secondary controller may forward information generated by the master gaming controller to the gaming machine peripheral devices and transmit secondary information to the peripheral devices.
Systems, apparatus, methods and articles of manufacture provide for a bingo game including at least one special ball having an associated special function. In one embodiment, one or more special functions may have persistent effects on one or more bingo spaces (e.g., of a bingo card) and/or may be combined with the effects one or more other special functions.
A gaming machine includes one or more display devices within a cabinet and configured to display a wagering game. The gaming machine further includes a top-box device having a top-box display facing a player position in front of the cabinet. The top-box device has a primary surface defined by a top edge, a bottom edge, and two side edges. The top-box device further has at least one side panel rotatably attached along one of the side edges of the top-box display and being movable between a plurality of positions in a range between a closed position and an open position.
A server notifies another user that a virtual item of the user has been registered when the virtual item of the user has been registered, receives a registration request for the virtual item of the user from the terminal of the other user, and registers the virtual item of the user in association with the identification information of the other user as a virtual item of the other user when the registration request for the virtual item of the user from the terminal of the other user has been received.
The invention provides a voting system based on smart mobile communication devices. It comprises at least one smart mobile communication device, at least one server device, a client module, and a server module. The client module is installed on the smart mobile communication device and it is used for temporarily saving the voter's information, submitting identity verification request, showing voting inquiries, and submitting votes. The server module is installed on the server device and it is used for storing the voter's information, verifying the voter's registration and identity, issuing and verifying the voting certificate, creating and publishing the voting affair, and calculating and publishing the voting contents statistics. The client module and the server module perform digital communications through a mobile communication network. The invention also provides a voting method based on smart mobile communication device. According to this invention, voting can be safe, convenient and fast.
A lock system is coupled to a lock at a dwelling of a dwelling user, resource owner, or end-user, collectively the user. An intelligent door lock system is provided with a remotely operable lock at the dwelling accessible by the user. The intelligent door lock system is configured to be in communication with a server. An automatic unlock system is activated when the user communicates with the server using the user's mobile device. The server is configured to transmit a crossing notification message in response to tracking the user's mobile device and enable an automatic unlock feature of the lock using the server and a mobile device App.
A device (D′) for detecting the presence of a user includes: an electrode (12′), electrode control elements (13), and a low frequency antenna (11). The electrode (12′) is formed by a plurality of structural units (MA . . . MI), each structural unit (MA . . . MI) including: a conductive segment (A . . . I) defined by dimensions (Lx, lx, ex) and electrically connected at least to a conductive connection (CXY) defined by a position of connection with respect to the conductive segment (A . . . I). The structural units (MA . . . MI) are electrically interconnected by the conductive connections (CXY). At least two consecutive structural units (MA . . . MI) differ by: the dimensions (Lx, lx, ex) of the conductive segment (A . . . I) and/or the position of the conductive connection (CXY).
This patent specification relates to apparatus, systems, methods, and related computer program products for providing home security/smart home objectives. More particularly, this patent specification relates to a plurality of devices, including intelligent, multi-sensing, network-connected devices, that communicate with each other and/or with a central server or a cloud-computing system to provide any of a variety of useful home security/smart home objectives.
A system for selectively opening a vehicle includes a first communication module for establishing a communication link to a service provider who obtains authorization data via a communication network, a first identification routine for unambiguously identifying the service provider, and a second communication module for establishing, via wireless communication, a communication link to a control unit of an access arrangement on a vehicle. A second identification routine allows the access arrangement to unambiguously identify the system. A third communication module receives update request data from the driver. An update routine updates authorization data in a memory of the system. When authorization is valid, the control unit receives a profiled control signal via the communication link, the profiled control signal causing the vehicle to be selectively opened via the control unit.
Various embodiments of an apparatus and method for determining a wheel end condition are disclosed. In one example, a controller for determining a wheel end condition comprises a plurality of wheel speed sensor inputs for receiving wheel speed sensor signals from a plurality of associated wheel speed sensors installed at associated wheel ends. The controller includes control logic that determines a speed as a function of the wheel speed sensor signal; receives a resistance value of the individual wheel speed sensor and compares the resistance value to a first and second high resistance threshold and a low resistance threshold. The control logic determines a wheel end condition exists at the associated wheel end as a function of the speed and the resistance value.
Systems and methods for image based location estimation are described. In one example embodiment, a first positioning system is used to generate a first position estimate. A set of structure façade data describing one or more structure façades associated with the first position estimate is then accessed. A first image of an environment is captured, and a portion of the image is matched to part of the structure façade data. A second position is then estimated based on a comparison of the structure façade data with the portion of the image matched to the structure façade data.
A computer-implemented image processing technique for selectively recovering the features of an original CAD model after the original CAD model has been converted to a digitized image and a new CAD model generated from the digitized image. The original boundary representation provides a template to transform the representation through processing under governance of a programmed processor so as to recover accuracy and reintroduce feature edges and feature corners as well as other detailed features to the CAD model obtained from the digitized image, e.g., to enable detailed features to be retained that would otherwise have been lost due to the lossy conversion into image space. The method operates to better ensure that reconstructed boundary vertices lie on original CAD model surfaces and feature edges and corners are recovered.
A rendering processing device includes: a rendering processing section configured to generate a vertex calculation result of an object on a basis of a rendering command, perform a rendering process on a basis of the vertex calculation result of each object, and store a rendering result in a rendering buffer; and a rendering command interpolating section configured to generate an interpolated vertex calculation result of each object on a basis of set values of rendering commands and vertex calculation results of each object at two different times. The rendering processing section performs the rendering process on a basis of the interpolated vertex calculation result, and stores an interpolated rendering result in the rendering buffer.