-
公开(公告)号:CN117011698A
公开(公告)日:2023-11-07
申请号:CN202310753327.5
申请日:2023-06-25
IPC分类号: G06V20/10 , G06V10/774 , G06V10/764 , G06V10/26 , G06V20/70 , G06V10/82
摘要: 本发明公开了一种多维度和多模型的地表全覆盖解译样本集评价方法,步骤1:构建地表覆盖解译样本集评价指标;步骤2:建立指标打分模型和泛化性评价模型;步骤3:将待评价样本集分别训练指标打分模型和泛化性评价模型,指标打分模型得到各评价指标得分;步骤4:对各评价指标得分进行交叉综合分析并加权计算得出指标评分;步骤5:构建泛化性评估测试数据集;步骤6:在泛化性评估测试数据集对泛化性评价模型进行测试,得到泛化性评分;步骤7;建立指标评分和泛化性评分的评级,若评级不同,则取较低评级为最终样本集评价。本发明从样本集自身特性和模型训练泛化性两个角度出发,使得地表覆盖解译样本集的评价更加有效、客观。
-
公开(公告)号:CN115019123B
公开(公告)日:2023-04-18
申请号:CN202210555496.3
申请日:2022-05-20
申请人: 中南大学 , 重庆市地理信息和遥感应用中心
IPC分类号: G06V10/774 , G06V10/778 , G06V10/82 , G06V10/764 , G06V20/10 , G06V20/70 , G06N3/0455 , G06N3/047 , G06N3/0895 , G06N3/091 , G06N3/096
摘要: 本发明公开了一种遥感图像场景分类的自蒸馏对比学习方法,包括:由结构一样的教师网络和学生网络组成长程依赖捕获主干网络模块;获取遥感图像并将图像进行全局切片、局部切片、尺度对齐及数据增强,得到同一张图像的融入尺度信息的不同版本;将全局切片图像送入教师网络、将全局切片图像和尺度对齐后的局部切片图像共同送入学生网络进行自蒸馏对比学习;获得不同版本的图片表征,再经过softmax将表征转化为概率分布,训练网络使学生网络输出的概率分布尽量匹配教师网络输出的概率分布;采用自蒸馏的方式训练神经网络模型;输出场景分类结果。本发明不依赖标签和负样本,可捕捉RSI的全局语义信息,可学习到RSI的多尺度特征。
-
公开(公告)号:CN111008603B
公开(公告)日:2023-04-18
申请号:CN201911246128.5
申请日:2019-12-08
发明人: 李朋龙 , 丁忆 , 连蓉 , 马泽忠 , 李晓龙 , 罗鼎 , 肖禾 , 段松江 , 王岚 , 王亚林 , 钱进 , 刘朝晖 , 王小攀 , 魏文杰 , 谭攀 , 曾远文 , 张灿 , 范文武 , 秦成 , 张斌
IPC分类号: G06V20/13 , G06V10/764 , G06V10/774 , G06V10/82 , G06V10/80 , G06N3/0464
摘要: 本发明公开了一种面向大尺度遥感图像的多类目标快速检测方法,包括以下步骤:将大比例尺遥感图像进行裁剪,并通过重新缩放和旋转来增强数据;利用具有串联线性整流函数模块和Inception模块的卷积特征提取器,将所得的图像数据作为输入并输出多个级别的特征;构建多尺度目标提议网络,并利用多尺度目标提议网络将卷积特征提取器输出的特征生成类似目标区域预测框;构建基于融合特征映射的精确目标检测网络,输入带有类似目标区域预测框的图像,利用精确目标检测网络实现精确的目标检测,输出检测结果。实现了具有大尺度变化的遥感图像中的多类目标自动检测,使得对遥感图像的多目标的实时检测成为可能。
-
公开(公告)号:CN113239786B
公开(公告)日:2022-09-30
申请号:CN202110510217.7
申请日:2021-05-11
申请人: 重庆市地理信息和遥感应用中心
摘要: 本发明公开了一种基于增强学习与特征变换的遥感图像乡村别墅识别方法,包括步骤:对样本集中的遥感影像进行处理,制作训练样本;搭建乡村别墅识别与提取网络模型;将训练样本输入所述乡村别墅识别与提取网络模型,得到训练后的识别与提取网络模型;将待识别的遥感影像输入训练后的识别与提取网络模型,并将其输出的数据与待识别的遥感影像进行叠加,获得乡村别墅识别与提取结果。其显著效果是:将深度特征提取、特征金字塔网络、编码—解码转换机制、目标候选区生成、目标检测与分割过程都融入到一个端到端的深度网络模型中,对于遥感图像乡村别墅识别与提取,具有良好的识别与提取效果。
-
公开(公告)号:CN114863291A
公开(公告)日:2022-08-05
申请号:CN202210416274.3
申请日:2022-04-20
申请人: 重庆市地理信息和遥感应用中心
IPC分类号: G06V20/13 , G06K9/62 , G06V10/762 , G06V10/764 , G06V10/58
摘要: 本发明公开了一种基于MCL和光谱差异度量的高光谱影像波段选择方法,通过计算波段间的相关系数,构建波段间相关性的邻接矩阵,运用马尔可夫聚类自适应地将波段划分为多个聚簇,并基于聚类结果,设计目标类别监督下的波段差异性度量准则,选择出适于目标地物提取的波段集,最后利用监督分类算法,依据训练样本和测试样本确定最优波段数,实现目标地物的最高精度提取。其显著效果是:充分运用波段间邻近相关性和波段索引距离信息,并且考虑了噪声较大波段和坏道零值波段对聚类的影响,提高了波段聚簇划分的准确性和合理性,实现了选择最优波段和目标地物精准识别,具有解决实际问题的优势。
-
公开(公告)号:CN114821334A
公开(公告)日:2022-07-29
申请号:CN202210540282.9
申请日:2022-05-17
申请人: 重庆市地理信息和遥感应用中心
IPC分类号: G06V20/10 , G06V10/25 , G06V10/44 , G06V10/56 , G06V10/48 , G06V10/54 , G06V10/74 , G06K9/62
摘要: 本发明公开了一种基于区域定位和局部特征匹配的楼顶加盖违建识别方法,包括利用已有的建筑物基底矢量数据,对建筑物进行编码,并在前后两期影像上分别定位同一建筑物的楼顶区域;对定位的两期影像同一建筑物楼顶区域进行局部特征提取;基于提取的特征信息,分别构建前后期正射影像建筑物顶部区域特征向量,并计算两个特征向量之间的相似性测度;将计算得出的相似性测度作为变化阈值,提取出变化的建筑物楼顶区域,识别出楼顶加盖型违法建筑影像等步骤。其显著效果是:能够精确检测屋顶加盖型违法建筑,为该类违法建筑的行政执法提供了有力支撑。
-
公开(公告)号:CN113723281A
公开(公告)日:2021-11-30
申请号:CN202111001772.3
申请日:2021-08-30
申请人: 重庆市地理信息和遥感应用中心
摘要: 本发明公开了一种基于局部自适应尺度集成学习的高分辨率影像分类方法,包括步骤:获取工作区的样本和高分辨率遥感影像;通过不同分割尺度下影像对象平均局部同质性的变化率曲线,获取若干个优选尺度分割结果;计算不同优选尺度分割结果下每个分割对象的分类特征,构建整幅影像的覆盖特征矩阵;计算覆盖特征矩阵中各个覆盖特征对于每个像元分类时的贡献度;整幅影像的局部自适应尺度的集成学习并分割影像;构建分类器对局部自适应尺度分割结果下影像对象进行集成学习并分类。其显著效果是:巧妙的避开了在基于对象分类范式中最佳分割参数的选择问题,实现了不同尺度下分类信息的集成,提高了高分率遥感影像的地物识别精度。
-
公开(公告)号:CN113011427A
公开(公告)日:2021-06-22
申请号:CN202110285256.1
申请日:2021-03-17
申请人: 中南大学 , 重庆市地理信息和遥感应用中心
摘要: 本发明公开了基于自监督对比学习的遥感图像语义分割方法,包括以下步骤:构建语义分割网络模型(如Deeplab v3+);采用无标注数据对所述网络模型的编码器进行预训练;预训练完成后,在标注样本上对所述网络模型进行有监督语义分割训练;采用有监督语义分割训练完成的网络模型对遥感图像进行语义分割;在预训练的过程中,采用全局风格对比和局部匹配对比结合的方式进行对比学习。本发明将对比自监督学习应用于到了遥感语义分割数据集,提出了全局风格和局部匹配对比学习框架,形成了基于自监督对比学习的遥感图像语义分割方法,使得语义分割方法的适用面更广,分割效果更好。
-
公开(公告)号:CN112884791A
公开(公告)日:2021-06-01
申请号:CN202110140509.6
申请日:2021-02-02
申请人: 重庆市地理信息和遥感应用中心
摘要: 本发明公开了一种构建大规模遥感影像语义分割模型训练样本集的方法,将已有的遥感影像矢量数据与多期遥感影像进行配准,并依据图斑密度分别通过滑窗算法自动切割提取初级样本集;对初级样本集中每一张图像进行特征提取,并采用聚类算法进行分类,剔除图像质量不佳的样本,获得中间样本集;将中间样本集分批次输入语义分割模型进行迭代优化训练,并在每次迭代优化完成后对样本进行预测,剔除中间样本集中的错误样本,获得目标样本集。其显著效果是:能够避免生成整幅影像且占用空间极大的掩膜,减少滑窗的滑动次数,提高样本的提取速度与数据质量;提高了正确样本在样本集中的纯度,大幅降低了制作大规模样本集的成本。
-
公开(公告)号:CN112016511A
公开(公告)日:2020-12-01
申请号:CN202010934958.3
申请日:2020-09-08
申请人: 重庆市地理信息和遥感应用中心
摘要: 本发明公开了一种基于大尺度深度卷积神经网络的遥感图像蓝顶房检测方法,包括步骤:获取训练数据集并进行标注;构建包含特征提取网络、上下文增强模块、目标区域生成网络、空间注意模块、池化层、目标检测模块的网络模型;输入标注后的训练数据集训练网络模型;将待检测的遥感图像输入已训练好的网络模型,得到蓝顶房的检测结果。其显著效果是:通过将深度特征提取、目标候选区生成、锚框生成、上下文增强、空间注意力机制、目标检测过程都融入到一个端到端的深度网络模型中,对于多尺度的遥感图像蓝顶房的检测,能够达到良好的检测效果。
-
-
-
-
-
-
-
-
-