一种基于声学单元的液路固有频率仿真方法

    公开(公告)号:CN113378291B

    公开(公告)日:2023-07-14

    申请号:CN202110524484.X

    申请日:2021-05-13

    IPC分类号: G06F30/15 G06F30/23

    摘要: 本发明涉及一种基于声学单元的液路固有频率仿真方法,可用于火箭输送系统液路频率特性分析,属于结构模态分析技术领域。一种基于声学单元的液路固有频率仿真方法,该方法采用有限元方法、基于声学单元的液路固有频率进行仿真分析,主要采用abaqus有限元软件中的声学单元模拟液路系统结构,赋予声学单元材料性能,包括密度和体积模量,建立液路系统有限元分析模型,对液路结构开展模态分析,获得液路系统的频率特性,该基于声学单元的液路固有频率仿真分析方法可广泛应用于运载火箭复杂液路系统的固有频率分析。

    一种基于声学单元的液路固有频率仿真方法

    公开(公告)号:CN113378291A

    公开(公告)日:2021-09-10

    申请号:CN202110524484.X

    申请日:2021-05-13

    IPC分类号: G06F30/15 G06F30/23

    摘要: 本发明涉及一种基于声学单元的液路固有频率仿真方法,可用于火箭输送系统液路频率特性分析,属于结构模态分析技术领域。一种基于声学单元的液路固有频率仿真方法,该方法采用有限元方法、基于声学单元的液路固有频率进行仿真分析,主要采用abaqus有限元软件中的声学单元模拟液路系统结构,赋予声学单元材料性能,包括密度和体积模量,建立液路系统有限元分析模型,对液路结构开展模态分析,获得液路系统的频率特性,该基于声学单元的液路固有频率仿真分析方法可广泛应用于运载火箭复杂液路系统的固有频率分析。

    防颤振单向阀
    6.
    发明公开

    公开(公告)号:CN108180297A

    公开(公告)日:2018-06-19

    申请号:CN201711238315.X

    申请日:2017-11-30

    IPC分类号: F16K15/02 F16K47/08

    摘要: 本发明公开了一种防颤振单向阀。其中,防颤振单向阀包括壳体、阀芯,壳体上设置有所述单向阀的入口和出口,阀芯用于打开和关闭入口与出口之间的流路,单向阀还包括安装在壳体内的套筒,套筒和壳体之间设置有弧形孔,弧形孔配置为气体流通的通道,弧形孔总的流通面积大于单向阀公称通径;套筒靠近单向阀出口部位设置有阻尼孔。本发明的防颤振单向阀基于流体流动特性,设置弧形孔形成气体流通通道,使局部压力降低,单向阀打开后不会发生颤振;在阀芯背压腔与出口间的套筒上设置阻尼孔,提高了阀芯前后压力差的稳定性,有利于抑制单向阀颤振;在阀芯与套筒间装有波纹带涨圈,保证了低温与常温条件下阀芯和套筒之间的进气量一致。

    一种高可靠的电磁阀阀芯结构

    公开(公告)号:CN105626932A

    公开(公告)日:2016-06-01

    申请号:CN201410602030.X

    申请日:2014-10-31

    IPC分类号: F16K31/06

    摘要: 本发明公开了一种高可靠的电磁阀阀芯结构,包括阀芯骨架和非金属密封件,所述阀芯骨架包括螺纹连接部段,在所述螺纹连接部段处设置有用于连接所述非金属密封件的盲孔,所述非金属密封件通过螺纹连接在所述盲孔内,所述非金属密封件的尾部向外逐渐缩小,所述盲孔的上口处设有能够和所述非金属密封件的尾部外表面贴合并压紧的滚边。本发明的高可靠的电磁阀阀芯结构通过螺纹连接和滚边相结合的连接方式保证了阀芯骨架与非金属密封件连接的可靠性的同时避免了胶黏剂的使用,提高了阀芯结构的使用温度范围。

    一种阀门力矩量化确定方法

    公开(公告)号:CN103487195B

    公开(公告)日:2015-04-22

    申请号:CN201310403387.0

    申请日:2013-09-06

    IPC分类号: G01L5/24

    摘要: 一种阀门力矩量化确定方法,1)根据螺栓的许用轴向拉应力确定最大预紧力Q1;2)根据螺牙弯曲应力计算得到最大轴向预紧力Q2;3)比较Q1和Q2的大小,并根据力矩计算公式得到最大力矩;4)采用有限元计算螺栓达到屈服应力时的最大力矩M2;5)比较M1和M2的大小,取小值作为阀门内无密封要求和有密封要的紧固连接的最大力矩;6)根据阀门内有密封要求的紧固连接材料的最小密封比压,获得最小轴向密封力F;7)根据密封结构的工作环境,获得最小预紧力为Q4;8)根据力矩计算公式得到最小力矩M3;9)采用有限元计算最小力矩M4;10)比较M3和M4的大小,取小值作为阀门内有密封要求的紧固连接的最小力矩。本发明解决了阀门紧固力矩依靠经验施加而导致误差偏大的弊端。