-
公开(公告)号:CN113805044B
公开(公告)日:2022-03-08
申请号:CN202111354981.6
申请日:2021-11-16
申请人: 北京智芯微电子科技有限公司 , 北京芯可鉴科技有限公司 , 国网信息通信产业集团有限公司 , 国家电网有限公司 , 国网福建省电力有限公司电力科学研究院
IPC分类号: G01R31/28
摘要: 本发明实施例提供一种芯片可靠性评估方法、装置及芯片,该方法包括测试芯片的抗ESD能力;添加寄生元件和等效器件至芯片的内部电路,组成新电路,其中,所述寄生元件为所述芯片在电磁干扰下产生的电容和/或电感,所述等效器件为芯片封装等效的电阻和/或电感;对所述新电路进行老化测试,以确定所述芯片的老化特性;根据所述芯片的抗ESD能力和所述芯片的老化特性,对所述芯片进行可靠性评估。所述芯片可靠性评估方法实现了芯片在不同电磁干扰下的可靠性的评估。
-
公开(公告)号:CN113851466A
公开(公告)日:2021-12-28
申请号:CN202111436654.5
申请日:2021-11-29
申请人: 北京智芯微电子科技有限公司 , 北京芯可鉴科技有限公司 , 国网信息通信产业集团有限公司 , 国家电网有限公司 , 国网福建省电力有限公司电力科学研究院
摘要: 本发明涉及半导体器件领域,提供一种隔离电容及隔离电容的制备方法。所述隔离电容包括衬底、下极板、上极板以及位于所述下极板与所述上极板之间的电介质层,还包括设置于所述下极板与所述衬底之间的隔离层;所述隔离层由介电常数在2~3之间的电介质材料形成,所述隔离层用于降低所述下极板与所述衬底之间的寄生电容。本发明在下极板与衬底之间增加超低介电常数的隔离层,大幅度降低下极板与衬底之间的寄生电容。
-
公开(公告)号:CN113805044A
公开(公告)日:2021-12-17
申请号:CN202111354981.6
申请日:2021-11-16
申请人: 北京智芯微电子科技有限公司 , 北京芯可鉴科技有限公司 , 国网信息通信产业集团有限公司 , 国家电网有限公司 , 国网福建省电力有限公司电力科学研究院
IPC分类号: G01R31/28
摘要: 本发明实施例提供一种芯片可靠性评估方法、装置及芯片,该方法包括测试芯片的抗ESD能力;添加寄生元件和等效器件至芯片的内部电路,组成新电路,其中,所述寄生元件为所述芯片在电磁干扰下产生的电容和/或电感,所述等效器件为芯片封装等效的电阻和/或电感;对所述新电路进行老化测试,以确定所述芯片的老化特性;根据所述芯片的抗ESD能力和所述芯片的老化特性,对所述芯片进行可靠性评估。所述芯片可靠性评估方法实现了芯片在不同电磁干扰下的可靠性的评估。
-
公开(公告)号:CN114050181A
公开(公告)日:2022-02-15
申请号:CN202210014429.0
申请日:2022-01-07
申请人: 北京芯可鉴科技有限公司 , 北京智芯微电子科技有限公司 , 国网信息通信产业集团有限公司
IPC分类号: H01L29/06 , H01L29/78 , H01L21/336
摘要: 本发明实施例提供一种NLDMOS器件及制备方法、芯片,所述NLDMOS器件包括:衬底,所述衬底上方设有第一高压N阱区和第二高压N阱区,所述第一高压N阱区和第二高压N阱区之间留有衬底间隙;所述第一高压N阱区和第二高压N阱区上设有P型降低电场区,所述P型降低电场区经过所述衬底间隙;所述第一高压N阱区上还设有P型体区,所述第二高压N阱区上设有N型漂移区;所述P型体区、衬底间隙以及N型漂移区形成PIN结。所述NLDMOS器件的结构设计有效的提高了击穿电压。
-
公开(公告)号:CN113903857A
公开(公告)日:2022-01-07
申请号:CN202111475179.2
申请日:2021-12-06
申请人: 北京芯可鉴科技有限公司 , 北京智芯微电子科技有限公司 , 国网信息通信产业集团有限公司
摘要: 本发明实施例提供一种电容器、芯片及电容器的制备方法,该电容器包括:第一电极、层叠电介质及第二电极,所述层叠电介质位于所述第一电极和所述第二电极之间;所述层叠电介质包括两层以上电介质膜,相邻两层电介质膜的折射率不同,相邻两层电介质膜相接触的表面是非平坦的并且彼此配合。该电容器提高了各个电介质膜的表面平整度、降低了缺陷数量,而且提高了不同折射率电介质膜的耦合性,提升了层叠电介质的击穿电压和经时击穿性能,从而大幅度提高了电容器的电性能。
-
公开(公告)号:CN112216745A
公开(公告)日:2021-01-12
申请号:CN202011433850.2
申请日:2020-12-10
申请人: 北京芯可鉴科技有限公司 , 北京智芯微电子科技有限公司 , 国网信息通信产业集团有限公司
IPC分类号: H01L29/78 , H01L29/08 , H01L29/40 , H01L29/423 , H01L21/336
摘要: 本发明提供一种高压非对称结构LDMOS器件及其制备方法。该LDMOS器件包括:漂移区和体区;漂移区的表面划分有第一区域和第二区域;体区的表面划分有第三区域和第四区域,第二区域和第四区域被第一栅介质层延伸覆盖;第一栅介质层的表面划分有第七区域,第七区域位于漂移区上方且被第二栅介质层覆盖;第二栅介质层的表面划分有第六区域和第五区域,第五区域以及第七区域以外的第一栅介质层被多晶硅栅延伸覆盖;漂移区的第一区域由表面向内形成有漏区;体区的第三区域由表面向内形成有源区,漏区深度大于源区深度。双层栅介质结构保障器件在高电压大电流条件下的工作可靠性。漏区结深大于源区结深,有效提升漏区对导电沟道的控制能力。
-
公开(公告)号:CN114050181B
公开(公告)日:2022-03-22
申请号:CN202210014429.0
申请日:2022-01-07
申请人: 北京芯可鉴科技有限公司 , 北京智芯微电子科技有限公司 , 国网信息通信产业集团有限公司
IPC分类号: H01L29/06 , H01L29/78 , H01L21/336
摘要: 本发明实施例提供一种NLDMOS器件及制备方法、芯片,所述NLDMOS器件包括:衬底,所述衬底上方设有第一高压N阱区和第二高压N阱区,所述第一高压N阱区和第二高压N阱区之间留有衬底间隙;所述第一高压N阱区和第二高压N阱区上设有P型降低电场区,所述P型降低电场区经过所述衬底间隙;所述第一高压N阱区上还设有P型体区,所述第二高压N阱区上设有N型漂移区;所述P型体区、衬底间隙以及N型漂移区形成PIN结。所述NLDMOS器件的结构设计有效的提高了击穿电压。
-
公开(公告)号:CN113707558A
公开(公告)日:2021-11-26
申请号:CN202111257655.3
申请日:2021-10-27
申请人: 北京芯可鉴科技有限公司 , 北京智芯微电子科技有限公司 , 国网信息通信产业集团有限公司
IPC分类号: H01L21/336 , H01L29/78 , H01L29/06 , H01L29/40 , G03F1/00
摘要: 本申请涉及半导体集成电路技术领域,具体地涉及一种用于制备高压LDMOS器件的方法及器件,包括提供第二导电类型的衬底;在衬底的中形成第一导电类型的漂移区与第二导电类型的体区;在漂移区上生长场氧化物;形成覆盖于漂移区的一部分和体区的一部分的栅介质层;在栅介质层上形成栅电极;在体区表面形成源区;以及在漂移区表面形成漏区;其中,使用局部线性掺杂工艺对第一选定区域注入第一导电类型离子,使用掩膜版调节漂移区的离子掺杂浓度,以使得漂移区中的第一子区域和第二子区域中的离子掺杂浓度降低从而第一子区域和第二子区域的离子掺杂浓度相对于漂移区中的第一子区域和第二子区域之外的其他子区域的离子掺杂浓度呈现非线性特征。
-
公开(公告)号:CN113964188A
公开(公告)日:2022-01-21
申请号:CN202111571321.3
申请日:2021-12-21
申请人: 北京芯可鉴科技有限公司 , 北京智芯微电子科技有限公司 , 国网信息通信产业集团有限公司
IPC分类号: H01L29/06 , H01L29/78 , H01L21/336
摘要: 本发明涉及半导体技术领域,提供一种横向双扩散金属氧化物半导体场效应管及其制作方法。所述横向双扩散金属氧化物半导体场效应管,包括衬底、栅极区、源极区、漏极区、P型体区以及位于所述衬底上的N型阱区、P型阱区和N型漂移区,还包括:离子注入形成的P型漂移区;所述P型漂移区位于所述N型阱区内,所述P型漂移区与所述P型体区之间存在预设距离。本发明在N型阱区内增加P型漂移区,P型漂移区与N型阱区的接触面构成PN结,P型漂移区与N型漂移区形成双重RESURF结构,降低器件的表面电场,并且能够承担更高的击穿电压,维持较低的导通电阻。
-
公开(公告)号:CN113887025A
公开(公告)日:2022-01-04
申请号:CN202111088795.2
申请日:2021-09-16
申请人: 北京智芯微电子科技有限公司 , 北京芯可鉴科技有限公司 , 国网信息通信产业集团有限公司 , 国家电网有限公司 , 国网福建省电力有限公司电力科学研究院
IPC分类号: G06F30/20 , G06F119/04 , G06F119/06
摘要: 本发明提供一种用于分析芯片老化的模拟仿真方法、装置及系统,属于芯片老化分析领域。所述方法包括:获取芯片上各器件的热网表和第一电网表;根据器件的热网表确定该器件在工作过程中的工作温度;根据器件的第一电网表获取该器件在工作温度下对应的电学参数;根据器件在工作温度下的电学参数,通过模拟仿真得到该器件老化后的性能参数;根据各器件的老化后的性能参数,通过模拟仿真得到所述芯片老化后的性能变化。基于热网表和第一电网表进行仿真得到各个器件在工作温度下老化后的电学参数,然后再根据老化后的电学参数仿真得到芯片老化后的性能参数,在进行芯片老化仿真时充分考虑不同器件各自的温度,使得老化仿真结果更准确。
-
-
-
-
-
-
-
-
-