一种应变平衡高势垒的中波红外大功率量子级联激光器的有源层

    公开(公告)号:CN117748298A

    公开(公告)日:2024-03-22

    申请号:CN202311570254.2

    申请日:2023-11-22

    IPC分类号: H01S5/34 H01S5/343

    摘要: 本发明提供了一种应变平衡高势垒的中波红外大功率量子级联激光器的有源层,量子级联激光器包括InP衬底,以及在所述InP衬底上制备的有源层,有源层包括多个级联周期,每个级联周期包括注入区和有源区;所述注入区在应变InAlAs势垒层嵌套插入AlAs高势垒层。本发明通过插入AlAs高势垒层调整注入势垒和出口势垒增强基态能级和有源区上能级E3的耦合强度以及提供足够大的微带能量宽度,从而使得有源区中低于下激射能级E2的更低能级的电子可以被有效传输到注入区的微带。将输出峰值增益提高到97以上,有效增大功率输出,而且优化过的材料组分种类更少,相比于目前报道的最大单管功率器件降低了外延生长的难度。

    一种长波红外大功率量子级联激光器的有源层

    公开(公告)号:CN117748297A

    公开(公告)日:2024-03-22

    申请号:CN202311568948.2

    申请日:2023-11-22

    IPC分类号: H01S5/34 H01S5/343

    摘要: 本发明提供了一种长波红外大功率量子级联激光器的有源层,量子级联激光器包括InP衬底,以及在InP衬底上制备的有源层;有源层包含多个级联周期,单个级联周期包括势垒层、第一深阱层、三个晶格匹配的浅阱层、三个复合阱层和第二深阱层;势垒层包括第一Al0.63In0.37As层和AlAs高势垒层;三个晶格匹配的浅阱层包括第一浅阱层、第二浅阱层和第三浅阱层;三个复合阱层包括第一复合阱层、第二复合阱层和第三复合阱层。本发明引用单周期有源区设计中引入特定复合比的复合阶梯阱来实现不同波长激射的设计思想,结合晶格匹配和应变平衡体系的优点,在势垒嵌套AlAs高势垒,设计出较了高增益的能带结构,在能带方面提升长波红外量子级联激光器输出功率。

    一种模拟肺部穿刺手术路径规划的方法

    公开(公告)号:CN116531088A

    公开(公告)日:2023-08-04

    申请号:CN202310315764.9

    申请日:2023-03-28

    摘要: 本发明提供了一种模拟肺部穿刺手术路径规划的方法,包括:S1、建立肺部模型,其中,肺部模型包括肺部中的血管模型;S2、将建立的肺部模型导入到Unity三维操作系统中;S3、确定肺部模型中组织目标点和穿刺针的进针点,其中,所述穿刺针上集成FBG传感器;S4、规划穿刺针的初步穿刺路径;S5、穿刺针按照初步穿刺路径插入肺部模型中,进行模拟穿刺手术;S6、采集穿刺针在肺部模型中的长度,角度和速度,重构穿刺针在肺部模型中的形状和位置;S7、通过穿刺针在肺部模型中的形状和位置,基于RRT算法重新规划穿刺针的穿刺路径。本发明提高了肺部穿刺手术术前路径规划的精确度,对医生径行术前训练,有助于提升医生手术训练结果,提高手术成功率。

    一种线性增量的逆有限元的飞行器机翼变形重构方法

    公开(公告)号:CN116401915A

    公开(公告)日:2023-07-07

    申请号:CN202310315931.X

    申请日:2023-03-28

    摘要: 本发明提供了一种线性增量的逆有限元的飞行器机翼变形重构方法包括:将飞行器机翼划分为多个三角形监测单元,构建每个三角形监测单元的理论应变位移矩阵;获取每个三角形监测单元的应变变化量;建立理论应变和真实应变之间的最小二乘误差函数;对最小二乘误差函数求极小值,得到每个三角形监测单元的单元体刚度矩阵;将多个三角形监测单元的单元体刚度矩阵叠加,并添加边界条件,得到飞行器机翼的总体刚度矩阵;通过线性增量计算飞行器机翼的总体刚度矩阵,对飞行器机翼变形重构。本发明在标准的逆有限元计算框架中引入线性增量计算方法,通过线性位移增量来重建飞行器机翼的变形,有利于提高非线性形变重构精度。

    一种中长波双色红外探测器

    公开(公告)号:CN115939236A

    公开(公告)日:2023-04-07

    申请号:CN202211315089.1

    申请日:2022-10-26

    摘要: 本发明提供了一种中长波双色红外探测器,包括:GaSb衬底;在GaSb衬底生长的GaSb缓冲层;在GaSb缓冲层生长的长波通道下接触层,其中,长波通道下接触层为100nm厚的14InAs/7GaSb超晶格,并进行Si掺杂;在长波通道下接触层生长的长波通道吸收层,其中,长波通道吸收层为1600nm厚的14InAs/7GaSb超晶格;在长波通道的吸收层生长的公共势垒层,其中,公共势垒层为100nm厚的AlGaSb;在公共势垒层生长的中波通道吸收层,其中,中波通道吸收层为2000nm厚的InAs/InAsSb超晶格;在中波通道吸收层生长的中波通道上接触层,其中,中波通道上接触层为100nm厚的InAs/InAsSb超晶格,并进行Si掺杂;在中波通道上接触层生长的顶电极层,在GaSb缓冲层生长的底电极层。本发明降低器件暗电流,提高器件探测性能,具有良好的探测效果。