Abstract:
A spectroscopy system (10) for analyzing in-elastic scattered electromagnetic radiation from an object being irradiated by electromagnetic radiation is provided. The system comprises a tunable lens assembly (13) having a tunable lens provided in the beam path between an electromagnetic radiation source (11) and the object (0) and arranged to project a beam of electromagnetic radiation emitted from the electromagnetic radiation source onto an area of the object and receive and collimate the in-elastic scattered electromagnetic radiation from the object. Based on electromagnetic radiation detected by at least a first detector (121) a control unit (14) is capable making a decision to change the operational settings of the tunable lens.
Abstract:
A sample (OBJ1) that is an object whose quantum efficiency is to be measured, and a standard object (REF1) having a known reflectance characteristic are each attached to a sample window (2) provided in a plane mirror (5). Based on respective spectrums measured by a spectrometer in respective cases where the sample (OBJ1) is attached and the standard object (REF1) is attached, the quantum efficiency of the sample (OBJ1) is measured. The plane of an opening of an observation window (3) is made substantially coincident with the exposed surface of the sample (OBJ1) or standard object (REF1), so that direct incidence, on the observation window (3), of the fluorescence generated from the sample (OBJ1) receiving an excitation light (L1) and the excitation light (L1) reflected from sample (OBJ1) is prevented.
Abstract:
A spectroscopic unit and spectroscopic device according to the present invention are provided with a filter that is provided with a plurality of optical filter elements disposed in order from the entrance side to the exit side of light under measurement and has different transmission wavelengths corresponding to entrance positions along a first direction. A first optical filter element from among the plurality of optical filter elements is tilted with respect to a second optical filter element disposed adjacently to the first optical filter element as a result of the first optical filter element being rotated by a prescribed angle with a third direction that is perpendicular to both the first direction and s second direction from the entrance side to the exit side as the axis of rotation thereof or being rotated by a prescribed angle with the first direction as the axis of rotation thereof.
Abstract:
A spectrophotometer includes a photodetection unit configured to convert received light into an electric signal to output the electric signal; a circuit unit including a plurality of gain amplifiers and a plurality of AD converters configured to amplify an output signal from the photodetection unit by a plurality of gains using the plurality of gain amplifiers and configured to convert the amplified output signals into digital signals using the plurality of AD converters to output the digital signals as a plurality of pieces of light amount data; a saturation determination unit configured to determine whether or not each of the plurality of pieces of light amount data from the circuit unit has been saturated; and a measurement result calculation unit configured to calculate, in accordance with a result of the determination by the saturation determination unit, a measurement result of the received light using a part or all of the plurality of pieces of light amount data.
Abstract:
Provided is an imaging device (1) having: a front optical system (10) that transmits light from an object; a spectral filter array (20) that transmits light from the front optical system (10) via a plurality of spectral filters; a small lens array (30) that transmits the light from the plurality of spectral filters via a plurality of small lenses respectively, and forms a plurality of object images; a picture element (50) that captures the plurality of object images respectively; and an image processor (60) that determines two-dimensional spectral information on the object images based on image signals output from the picture element (50). The front optical system (10) is configured to transmit the light from the focused object to collimate the light into a parallel luminous flux.
Abstract:
Demultiplexing systems and methods are discussed which may be small and accurate without moving parts. In some cases, demultiplexing embodiments may include optical filter cavities that include filter baffles and support baffles which may be configured to minimize stray light signal detection and crosstalk. Some of the demultiplexing assembly embodiments may also be configured to efficiently detect U.V. light signals and at least partially compensate for variations in detector responsivity as a function of light signal wavelength.