Abstract:
Procédé et appareil d'analyse spectroscopique transitoire d'un métal en fusion selon lesquels une sonde (10) contenant un laser pulsé de puissance élevée (14) produisant un rayon laser pulsé ayant une forme d'onde d'impulsion sensiblement triangulaire est immergée dans le métal en fusion et irradie une quantité représentative du métal en fusion. Le rayon laser pulsé vaporise une partie du métal en fusion pour produire une colonne de plasma ayant une composition élémentaire représentative de la composition élémentaire du métal en fusion. Avant que la colonne de plasma n'atteigne l'équilibre thermique peu après la fin de l'impulsion laser, un détecteur spectroscopique (241) dans la sonde (10) détecte des inversions de lignes spectrales pendant une première fenêtre de temps court. Ensuite, lorsque le plasma de post-luminance se trouve en équilibre thermique, un second détecteur spectroscopique (242) également dans la sonde (10) effectue une seconde mesure spectroscopique de durée courte. Un télémètre (22) mesure et commande la distance entre la surface du métal en fusion et le laser pulsé (14).
Abstract:
Zur Erzeugung einer Referenzstrahlung ist dem Austrittsspalt (4) mindestens an einer Seite in Beugungsrichtung ein weiterer Spalt (5) mit fester oder veränderlicher Spaltbreite benachbart. Dadurch wird gewährleistet, dass sich die Intensität der Referenzstrahlung bei Intensitätsschwankungen des von der Strahlungsquelle (1) ausgehenden Lichtstromes weitgehend linear proportional zur Intensität der Messstrahlung ändert, ohne dass Verluste im Mess-Strahlenbündel auftreten.
Abstract:
An adjustable slit plate assembly for a monochromator is formed by two identical metal plates (P1, P2) each having a set of slits (EX1 to EX6 and EN1 to EX6 respectively) with all the slits disposed on a common circle. The plates (P1, P2) are located and supported on a disc (SM) on a rotatable shaft (SH) at the axis (A) of the circle. The slits are each of minimum length to pass a radiant beam of given energy through the monochromator and each set of slits occupies an arc of substantially minimum length. The shape of each plate is substantially a sector of a further circle whose radius and arc are the minimum necessary to accommodate the slits and the axis. The complete configuration of the plates is formed by etching in a single operation, and a greater number of slit sets can be formed together from a plate of given area than for the prior art case in which the two sets of slits for a slit assembly are formed in a single plate in the shape of a complete disc. A significant cost reduction in the slit assembly is thus achieved.
Abstract:
Correction optics (10) are disposed in an optical path directly behind an entry slit (1) of a spectrometer (100) and configured to warp a straight object line shape (A1) of the entry slit (1) into a curved object line shape (B1) from a point of view of the projection optics (2,3,4). The warping of the correction optics (10) is configured such that a curvature (R1) of the curved object line shape (B1) counteracts an otherwise distorting curvature (R5) in a projection (A5) of the straight object line shape (A1) by the projection optics (2,3,4) without the correction optics (10). As a result, the spectrally resolved image (B5) comprises a plurality of parallel straight projected line shapes formed by spectrally resolved projections of the straight object line shape (A1).
Abstract:
A spectrometer 1A includes a light detection element 20 provided with a light passing part 21 and a light detection part 22, a support 30 fixed to the light detection element 20 such that a space S is formed between the light passing part 21 and the light detection part 22, a first reflection part 11 provided in the support 30 and configured to reflect light L1 passing through the light passing part 21 in the space S, a second reflection part 12 provided in the light detection element 20 and configured to reflect the light L1 reflected by the first reflection part 11 in the space S, and a dispersive part 40 provided in the support 30 and configured to disperse and reflect the light L1 reflected by the second reflection part 12 to the light detection part 22 in the space S.
Abstract:
Aspects of the present disclosure include methods and systems for assaying a sample for an analyte. Methods according to certain embodiments include illuminating a sample with a slit-shaped beam of light, detecting light transmitted through the sample, determining absorbance of the transmitted light at one or more wavelengths and calculating concentration of the analyte based on the absorbance to assay the sample for the analyte. Systems for practicing the subject methods are also described.
Abstract:
The spectrometer comprises an entrance slit (1), a collimator mirror (2), a diffraction grating (3), a focusing mirror (4), an exit slit (5), and two additional exit slits (6, 7) behind which there are separate photodetectors (8, 9). Both additional exit slits (6, 7) are located symmetrically in relation to the first exit slit (5) which constitutes the nominal slit of the monochromator.