Abstract:
A plant sensor includes a light source section having first and second light emitters configured to irradiate the first and second measuring light toward the object to be measured, respectively, and a light receiver configured to receive reflected light from the object to be measured , and output light-receiving signals, a controller configured to control emission of the first and second light emitters at a different timing, an integrator configured to integrate the light-receiving signals, and output an integration signal, and a calculator configured to calculate, according to the integration signal, a reflection rate as a ratio of light volume of the reflected light of the first measuring light from the object to be measured to light volume of the first measuring light, a reflection rate as a ratio of light volume of the reflected light of the second measuring light from the object to be measured to light volume of the second measuring light, and obtains information regarding a growing condition of the object to be measured.
Abstract:
Thermally tunable optical sensors are used in sampling tools for analysis of samples from a wellbore. The thermally tunable optical sensors generate a series passbands of wavelength emissions and detect attenuation in a signal thereof. The attenuation detected is processed and used to determine aspects of the samples. Analysis may be completed remotely (outside of the wellbore), within the wellbore (during drilling or otherwise), or as a part of another process such as fluid management, transport and refinement.
Abstract:
A method for detecting disease in a patient includes providing infrared (IR) light and coupling the IR light through direct lens coupling or through a first group of one or more optical fibers. IR light is reflected from a portion of the patient and collected by a lens arrangement or a second group of one or more optical fibers. The reflected IR light is dispersed into its spectrum which is detected and analyzed. An apparatus suitable for diagnosing a disease in a patient includes an IR light source and optical fiber or direct lens coupling of IR light onto a body part or fluid of the patient. Reflected light from the patient is optically dispersed using a prism or grating. An IR focal plane array receives the optically dispersed light. The spectrum of the reflected IR light is used to provide a diagnosis of disease in the patient by identifying various disease markers or chemical fingerprints. The method and apparatus are capable of non-invasively detecting disease markers in a patient.
Abstract:
This invention relates to a sealed infrared radiation source, comprising an emitter membrane being stimulated by an electrical current conducted through said membrane, said membrane thus comprising an electrical conductor, wherein the membrane is mounted between a first and a second housing parts, at least one of which being transparent in the IR range, and each housing part defining a cavity between the membrane and the respective housing part of each side of the membrane, wherein the housing parts are at least partially electrical conductive, and a first of said housing parts is electrically coupled to a first end of said electrical conductor and insulated from the second end of said electrical conductor, the second housing part being electrically coupled to a second end of said electrical conductor and being insulated from the first end of said electrical conductor.
Abstract:
An infrared emitter (10), which utilizes a photonic crystal (PC) structure to produce electromagnetic emissions with a narrow band of wavelengths, includes a semiconductor material layer (12), a dielectric material layer (14) overlaying the semiconductor material layer, and a metallic material layer (16) having an inner side overlaying the dielectric material layer. The semiconductor material layer (12) is capable of being coupled to an energy source for introducing energy to the semiconductor material layer. An array of surface features (18) are defined in the device in a periodic or quasi-periodic manner. The emitter device is adapted to emit electromagnetic energy having spectral characteristics determined by parameters of the periodically distributed surface features, the parameters including shape, size, depth, distribution geometry, periodicity, material properties and defects. The emitter device may also function as a selective detector of electromagnetic radiation.
Abstract:
A sensing apparatus consisting of more than one diode laser having select lasing frequencies, a multiplexer optically coupled to the outputs of the diode lasers with the multiplexer being further optically coupled to a pitch side optical fiber. Multiplexed laser light is transmitted through the pitch side optical fiber to a pitch optic operatively associated with a process chamber which may be a combustion chamber or the boiler of a coal or gas fired power plant. The pitch optic is oriented to project multiplexed laser output through the process chamber. Also operatively oriented with the process chamber is a catch optic in optical communication with the pitch optic to receive the multiplexed laser output projected through the process chamber. The catch optic is optically coupled to an optical fiber which transmits the multiplexed laser output to a demultiplexer. The demultiplexer demultiplexes the laser light and optically couples the select lasing frequencies of light to a detector with the detector being sensitive to one of the select lasing frequencies.
Abstract:
A spectroscopy method and apparatus comprises an excitation source arranged to excite a vibrational mode of a sample and provide multi-dimensional spectral information by varying the excitation in a time or frequency domain. A parameter of a further excitation source or of the sample is controlled so as to provide coherence spectroscopy by ensuring that a non-resonant local oscillator field generated in the sample dominates a homodyne signal generated in the sample. As a result heterodyne detection is achieved in a manner allowing an output signal linearly dependent upon concentration providing improved sensitivity. In an alternative embodiment where heterodyning is not used, an ultraviolet or visible excitation excites an electronic resonance, whereafter fluorescence is measured.
Abstract:
A sensing apparatus consisting of more than one diode laser having select lasing frequencies, a multiplexer optically coupled to the outputs of the diode lasers with the multiplexer being further optically coupled to a pitch side optical fiber. Multiplexed laser light is transmitted through the pitch side optical fiber to a pitch optic operatively associated with a process chamber which may be a combustion chamber or the boiler of a coal or gas fired power plant. The pitch optic is oriented to project multiplexed laser output through the process chamber. Also operatively oriented with the process chamber is a catch optic in optical communication with the pitch optic to receive the multiplexed laser output projected through the process chamber. The catch optic is optically coupled to an optical fiber which transmits the multiplexed laser output to a demultiplexer. The demultiplexer demultiplexes the laser light and optically couples the select lasing frequencies of light to a detector with the detector being sensitive to one of the select lasing frequencies.