摘要:
The present invention relates to a pharmaceutical composition for treating wounds, containing a silk protein and a plasma component as active ingredients. According to the present invention, wounds can be more effectively healed by using synergistic effects of a silk protein and a plasma component.
摘要:
The present invention relates to a method of producing a fatty acid alkyl ester using microorganisms having the ability to produce oil, and more particularly to a method of producing a fatty acid alkyl ester, the method comprising culturing microorganisms having the ability to produce oil, thus accumulating a large amount of oil in the microorganisms, inducing the autolysis of the produced oil in the microorganisms to produce a free fatty acid, and converting the free fatty acid into an alkyl ester. According to the method of the present invention, oil accumulated in microorganisms, such as triacylglycerol that is typical oil produced by microorganisms, can be converted into a fatty acid alkyl ester with high efficiency using a metabolic engineering approach. Thus, the method of the present invention is useful for the industrial production of a fatty acid alkyl ester which has been recently found to be effective as biodiesel.
摘要:
There is provided a recombinant microorganism having producibility of poly(lactate-co-glycolate) from glucose, and more particularly, a recombinant microorganism having producibility of poly(lactate-co-glycolate) without adding an exogenous glycolate precursor, and a method of preparing [poly(preparing lactate-co-glycolate)] using the same. According to the present invention, the poly(lactate-co-glycolate) in which the concentration of the glycolate fraction is high may be prepared at a high concentration without supplying exogenous glyoxylate. Therefore, the present invention may be effectively used for treatment.
摘要:
The present invention relates to recombinant microorganisms having an increased ability to produce butanol, and a method of producing butanol using the same. More specifically, the invention relates to recombinant microorganisms whose ability to produce butanol was increased by manipulation of their metabolic networks, and a method of producing butanol using the same. The recombinant microorganisms having an increased ability to produce butanol comprise a deletion of a gene, which encodes an enzyme that converts acetyl CoA to acetate, in host microorganisms having genes that encode enzymes involved in acetyl CoA and butyryl CoA biosynthetic pathway. The recombinant microorganisms obtained by manipulating the metabolic flux of microorganisms are able to selectively produce butanol with high efficiency, and thus are useful as microorganisms for producing industrial solvents and transportation fuels.
摘要:
There is provided a recombinant microorganism having producibility of poly(lactate-co-glycolate) from glucose, and more particularly, a recombinant microorganism having producibility of poly(lactate-co-glycolate) without adding an exogenous glycolate precursor, and a method of preparing [poly(preparing lactate-co-glycolate)] using the same. According to the present invention, the poly(lactate-co-glycolate) in which the concentration of the glycolate fraction is high may be prepared at a high concentration without supplying exogenous glyoxylate. Therefore, the present invention may be effectively used for treatment.
摘要:
The present invention relates to a succinic acid-producing mutant microorganism that is able to utilize sucrose and glycerol simultaneously as carbon sources. More particularly, the present invention relates to a succinic acid-producing mutant microorganism that is able to utilize sucrose and glycerol simultaneously for succinic acid production, the mutant organism being obtained by relieving the mechanism of sucrose-mediated catabolite repression of glycerol in a succinic acid-producing microorganism. As described above, when the succinic acid-producing mutant microorganism is cultured, it utilizes sucrose and glycerol simultaneously so that succinic acid can be produced with high productivity in a maximum yield approaching the theoretical yield while the production of byproducts is minimized. In addition, according to the present invention, various reduced chemicals which have been produced in low yields in conventional methods can be more effectively produced.
摘要:
The present invention relates to a method of producing a fatty acid alkyl ester using microorganisms having the ability to produce oil, and more particularly to a method of producing a fatty acid alkyl ester, the method comprising culturing microorganisms having the ability to produce oil, thus accumulating a large amount of oil in the microorganisms, inducing the autolysis of the produced oil in the microorganisms to produce a free fatty acid, and converting the free fatty acid into an alkyl ester. According to the method of the present invention, oil accumulated in microorganisms, such as triacylglycerol that is typical oil produced by microorganisms, can be converted into a fatty acid alkyl ester with high efficiency using a metabolic engineering approach. Thus, the method of the present invention is useful for the industrial production of a fatty acid alkyl ester which has been recently found to be effective as biodiesel.
摘要:
The present invention relates to a method for producing target proteins by deleting or amplifying ibpA and/or ibpB genes coding for inclusion body-associated proteins. The present invention provides two methods for producing target proteins using ibpA and/or ibpB genes coding for inclusion body-associated proteins of E. coli, whose effect on the production of target proteins have not yet been reported. The first method of the present invention is to enhance the secretory production and activity of target proteins using ibpA and/or ibpB genes-deleted bacteria. The second method of the present invention is to enhance the production of target proteins in the cytoplasm and also convert the target proteins from soluble form to insoluble inclusion body, using ibpA and/or ibpB gene-amplified bacteria.
摘要:
The present invention relates to a modified microorganism having productivity of acrylic acid, into which a beta -alanine coenzyme A transferase gene and a beta -alanyl-CoA:ammonia lyase gene are introduced, and to a method for preparing acrylic acid using the same.
摘要:
The present invention relates to a microorganism variant having the ability to produce hydrocarbons, including alkane, and a method of producing hydrocarbons, including alkane, using the same, and more particularly, to a microorganism variant obtained by introducing a gene encoding an enzyme converting fatty acyl-acp to free fatty acid, a gene encoding an enzyme converting free fatty acid to fatty acyl-CoA, a gene encoding an enzyme converting fatty acyl-CoA to fatty aldehyde and a gene encoding an enzyme converting fatty aldehyde to alkane into a microorganism improved so as to be suitable for the production of hydrocarbons, including alkane, and a method of producing hydrocarbons, including alkane, using the same. The microorganism variant of the present invention has high potential to be used to improve strains by additional metabolic flux engineering, and thus is useful for the industrial production of hydrocarbons, including alkane.