Abstract:
A molded article is provided that includes a resin matrix having a surface, the resin matrix formed from cross-linked polyester resin or vinyl-ester resin. Microspheroids having a mean diameter of from 16 to 45 microns are embedded in the resin matrix. The microspheroids having a specific gravity of between 0.19 and 0.6 and an isotactic crush strength of greater than or equal to 2750 kilopascals (kPa). Surface activating agent alkoxysilane molecules are covalently bonded to each of the microspheroids. Filler particles are also present in the resin matrix. Fibers are also present in the resin matrix. The fibers being natural fibers, glass fibers, carbon fibers, or a combination thereof. The article has a specific gravity of between 0.80 and 1.25.
Abstract:
A thermoplastic composition includes a poly(etherimide-siloxane) copolymer having a siloxane content of more than 0 to less than 50 weight percent based on the total weight of the poly(etherimide-siloxane) copolymer; an aromatic polyketone; and a mineral filler having a particle diameter of 0.1-2 micrometers. The thermoplastic composition has a lower toxicity index than the same composition without the aromatic polyketone, the mineral filler, or both, as determined in accordance with EN53505.
Abstract:
Provided are excellent coated lithium-nickel composite oxide particles with which it is possible, due to the high environmental stability thereof, to minimize the incidence of impurities owing to absorption of moisture and carbon dioxide gas, said particles having high adhesiveness such that the coating layer does not easily delaminate, and having lithium-ion conductivity. The coated lithium-nickel composite oxide particles, in which an electroconductive polymer is crosslinked to the lithium-nickel composite oxide particles by a three-dimensional structure, are electrically and ionically conductive, and the compound is capable of suppressing the transmission of moisture and carbon dioxide. It is therefore possible to provide coated lithium-nickel composite oxide particles for a lithium-ion cell positive-electrode active substance that is excellent for use in a lithium-ion cell.
Abstract:
The present invention is a polymer composition, containing: 30 to 60 volume % of a melt processable fluoropolymer; and 40 to 70 volume % of boron nitride particles; wherein the boron nitride particles are made from particles (A) and particles (B), the particles (A) are spherical aggregate particles with an average particle diameter of 55 μm to 100 μm, and an aspect ratio of 1 to 2, the particles (B) are particles with an average particle diameter of 8 μm to 55 μm, and the volume ratio of the particles (A) to the total amount of boron nitride is 80 to 99 volume %. The polymer compositions have excellent moldability, insulation properties, heat conductivity, and heat resistance, and are suitable as raw materials for a sufficiently strong molded products, such as thin films.
Abstract:
The present invention relates to a reinforced polyamide molding composition, comprising a thermoplastic polyamide and a fibrous reinforcing agent, wherein the fibrous reinforcing agent comprises a mixture of glass fibers made of E-glass and glass fibers made of High Strength-glass. The present invention also relates to a molded part, made of the reinforced polyamide molding composition, as well as to an electrical or electronic device, comprising the molded part.
Title translation:HEXAGONALEPLÄTTCHENFÖRMIGEZINKOXIDPARTIKEL,HERSTELLUNGSVERFAHRENDAFÜR,KOSMETIKUM,FÜLLSTOFF,HARZZUSAMMENSETZUNG,INFRAROTREFLEKTIERENDES MATERIAL UND BESCHICHTUNGSZUSAMMENSETZUNG
Abstract:
It is one of objects of the present disclosure to provide hexagonal plate-shaped zinc oxide particles which can be used suitably for a cosmetic, a filler, a resin composition, an infrared radiation reflective material, and a coating composition, and a method for producing the same. Hexagonal plate-shaped zinc oxide particles having a primary particle diameter of 1.1 µm or more and a D90/D10 of 3.0 or less in particle size distribution.