Abstract:
A spectrometer 1A includes spectroscopic units 2A, 2B, and 2C. A light passing part 21A, a reflection part 11A, a common reflection part 12, a dispersive part 40A, and a light detection part 22A included in the spectroscopic unit 2A are arranged along a reference line RL1 when viewed in a Z-axis direction. A light passing part 21B, a reflection part 11B, the common reflection part 12, a dispersive part 40B, and a light detection part 22B included in the spectroscopic unit 2B are arranged along a reference line RL2 when viewed in the Z-axis direction. A light passing part 21C, a reflection part 11C, the common reflection part 12, a dispersive part 40C, and a light detection part 22C included in the spectroscopic unit 2C are arranged along a reference line RL3 when viewed in the Z-axis direction. The reference line RL1, the reference line RL2, and the reference line RL3 intersect with one another.
Abstract:
A spectroscopic measurement apparatus 1A comprises an integrating sphere 20 in which a sample S is located, a spectroscopic analyzer 30 dispersing the light to be measured from the sample S and obtaining a wavelength spectrum, and a data analyzer 50. The analyzer 50 includes an object range setting section which sets a first object range corresponding to excitation light and a second object range corresponding to light emission from the sample S in a wavelength spectrum, and a sample information analyzing section which determines a luminescence quantum yield of the sample S, determines a measurement value ¦ 0 of the luminescence quantum yield from results of a reference measurement and a sample measurement, and determines, by using factors ², ³ regarding stray light in the reference measurement, an analysis value ¦ of the luminescence quantum yield with the effect of stray light reduced by ¦ = ²¦ 0 +³. This realizes a spectroscopic measurement apparatus, a measurement method, and a measurement program which can reduce the effect of stray light generated in a spectrometer.
Abstract:
A spectroscopic assembly (165) may include a spectrometer (110). The spectrometer may include an illumination source to generate a light to illuminate a sample. The spectrometer may include a sensor to obtain a spectroscopic measurement based on light, reflected by the sample, from the light illuminating the sample. The spectroscopic assembly may include a light pipe (120) to transfer the light reflected from the sample. The light pipe may include a first opening (146) to receive the spectrometer. The light pipe may include a second opening (148) to receive the sample, such that the sample is enclosed by the light pipe and a base surface when the sample is received at the second opening. The light pipe may be associated with aligning the illumination source and the sensor with the sample.
Abstract:
A spectrometer 1A includes a light detection element 20 provided with a light passing part 21, a first light detection part 22, and a second light detection part 26, a support 30 fixed to the light detection element 20 such that a space S is formed, a first reflection part 11 provided in the support 30 and configured to reflect light L1 passing through the light passing part 21 in the space S, a second reflection part 12A provided in the light detection element 20 and configured to reflect the light L1 reflected by the first reflection part 11 in the space S, and a dispersive part 40A provided in the support 30 and configured to disperse and reflect the light L1 reflected by the second reflection part 12A to the first light detection part 22 in the space S. A plurality of second light detection parts 26 is disposed in a region surrounding the second reflection part 12A.
Abstract:
A gas turbine engine having an optical imaging system (100) with a housing (106) configured for mounting to a wall of the turbine engine, a hollow probe (118) extending from the housing (106) and having a longitudinal axis (112), and an image receiving device (114) at an end of the hollow probe (118) configured to receive at least one of a perspective or image.
Abstract:
A disposable photometric measurement tip comprising a polymer tip, the polymer tip having a capillary filling channel, the capillary filing channel having an opening at a distal end of the polymer tip, a wave guide channel acting as an optical input coupling and a wave guide channel acting as an optical output coupling, each of the wave guide channels having an opening at a proximal end of the polymer tip wherein the capillary filling channel, the wave guide channel acting as an optical input coupling and the wave guide channel acting as an optical output coupling are connected to each other.
Abstract:
Increasing the precision of process monitoring may be improved if the sensors take the form of travelling probes riding along with the flowing materials in the manufacturing process rather than sample only when the process moves passed the sensors fixed location. The probe includes an outer housing hermetically sealed from the flowing materials, and a light source for transmitting light through a window in the housing onto the flowing materials. A spatially variable optical filter (SVF) captures light returning from the flowing materials, and separates the captured light into a spectrum of constituent wavelength signals for transmission to a detector array, which provides a power reading for each constituent wavelength signal.
Abstract:
The present application provides a system (1) that comprises a mobile phone (25) to allow testing of samples from a patient at the point of care or environmental/industrial process monitoring tests to be performed in the field. The system (1) may be easily adapted for use with a variety of different mobile phones (25). The mobile phone (25) comprises an integrated camera (15). The system (1) further comprises an optical module (20) for receiving a sample for testing. The mobile phone (25) is configured to extract the intensity and/or color information from the camera (15).