Abstract:
A novel and useful transmitter (TX) architecture for ultra-low power (ULP) radios. An all-digital PLL employs a digitally controlled oscillator (DCO) having switching current sources to reduce supply voltage and power consumption without sacrificing phase noise and startup margins. It also reduces 1/f noise allowing the ADPLL after settling to reduce its sampling rate or shut it off entirely during direct DCO data modulation. A switching power amplifier integrates its matching network while operating in class-E/F2 to maximally enhance its efficiency. The transmitter has been realized in 28 nm CMOS and satisfies all metal density and other manufacturing rules. It consumes 3.6 mW/5.5 mW while delivering 0 dBm/3 dBm RF power in Bluetooth Low-Energy.
Abstract:
A circuit includes a bias circuit for a biased transistor. The bias circuit includes a master-slave source follower circuit, a reference transistor, and a bias circuit voltage output coupled to the biased transistor and configured to provide a bias voltage. The reference transistor has a transconductance substantially identical to a transconductance of the biased transistor. A signal ground circuit may be coupled between the biased transistor and one or more components of the bias circuit that do not generate significant return currents to a power supply ground. A method includes generating a current in a reference transistor according to a first voltage generated using a master source follower circuit, generating a second voltage substantially identical to the first voltage using a slave source follower circuit, and providing the second voltage to a biased transistor. The reference transistor has a transconductance substantially identical to a transconductance of the biased transistor.
Abstract:
This audio amplifier (10) comprises: - an input (12) for an audio signal to be amplified and an output (14) for feeding a load (16) from the amplified audio signal; - a reference voltage generator (18) for generating voltage of very high linearity and low output impedance, capable of receiving as an input the audio signal to be amplified; - a power current generator (19), comprising a power voltage generator (21), the output of which is connected to the output of the reference voltage generator (18), via a coupling impedance (30). The coupling impedance (30) comprises two coupling inductances (32A, 32B) mounted in series between the output of the reference generator (18) and the output of the power voltage generator (21) and an attenuation impedance (44) linking a mid-point between the two coupling inductances (32A, 32B) and a reference potential. The attenuation impedance (44) comprises an attenuation inductance (44A).
Abstract:
A circuit includes a bias circuit for a biased transistor. The bias circuit includes a master-slave source follower circuit, a reference transistor, and a bias circuit voltage output coupled to the biased transistor and configured to provide a bias voltage. The reference transistor has a transconductance substantially identical to a transconductance of the biased transistor. A signal ground circuit may be coupled between the biased transistor and one or more components of the bias circuit that do not generate significant return currents to a power supply ground. A method includes generating a current in a reference transistor according to a first voltage generated using a master source follower circuit, generating a second voltage substantially identical to the first voltage using a slave source follower circuit, and providing the second voltage to a biased transistor. The reference transistor has a transconductance substantially identical to a transconductance of the biased transistor.
Abstract:
Techniques for designing baseband processing circuitry for radio IC's. In an aspect, techniques for differential-to-single-ended conversion in a baseband portion of the IC are disclosed to reduce the pin count and package size for RF IC's. In another aspect, the converter includes selectable narrowband and wideband amplifiers, wherein the wideband amplifiers may be implemented using transistor devices having smaller area than corresponding transistor devices of narrowband amplifiers. Further techniques for bypassing one or more elements, and for implementing a low-pass filter of the converter using an R-C filter network, are described.
Abstract:
A tunable wide band driver amplifier is disclosed. In an exemplary embodiment, an apparatus includes a first band selection circuit selectively connected between an output terminal of an amplifier and a circuit ground. The first band selection circuit configured to adjust an amplification band from a first frequency band to a second frequency band. The apparatus also includes a first harmonic reduction circuit selectively connected between the first band selection circuit and the circuit ground and configured to reduce 2nd harmonic frequencies associated with the first frequency band when the amplification band is set to the first frequency band.
Abstract:
A mixer in an RF demodulator includes a transconductance amplifier (12) that converts an RF input voltage (Vin), applied to the base of a first bipolar transistor (Q1), to a first output current (I) containing third order intermodulation (IM3) products, an IM3 canceller (14) being connected in parallel with the transconductance amplifier. The base of a second bipolar transistor (Q2) in the IM3 canceller is coupled to the DC component of Vin, and the AC component of Vin is coupled to the emitter of the second bipolar transistor, such that the currents though the first bipolar transistor and the currents through the second bipolar transistor change oppositely. The collectors of the transistors are coupled together. The values of components in the IM3 canceller are set during simulation and calibration so that the current generated by the IM3 canceller substantially cancels out IM3 distortion in the first current or other current generated in a demodulator of Vin.
Abstract:
Disclosed is a differential microphone pre-amplifier circuit (120) for providing an amplified differential signal at a first (A) and a second (B) output terminal of the microphone pre- amplifier (120), including a first voltage controlled current generator (101), a second voltage controlled current generator (102) and a third voltage controlled current generator (103) all being configured to receive, amplify and convert a voltage signal generated by an associated microphone (110) to a current signal output.