Abstract:
Une sonde de mesure (30) présente un support de substrat d'analyse (A) avec un tissu (1) constitué de fils métalliques (1a) dans le sens de la chaîne et de fils isolants en matière synthétique (1b) dans le sens de la trame. Plusieurs orifices de maille sont dopés avec des substrats d'analyse (32-34) dont la résistance électrique est modifiée en cas de contact avec, par exemple, un liquide à mesurer. Les fils métalliques (1a) passant par les mailles dopées établissent le contact électrique avec l'extérieur ou avec un circuit d'évaluation (B) se présentant de préférence sous la forme d'un circuit intégré.
Abstract:
A device comprising a first and a second electrically conductive textile portion is provided, wherein the first and second textile portions are electrically isolated from each other. The device also comprises an electrical element having a first contact pad which is electrically connected to the first textile portion and a second contact pad which is electrically connected to the second textile portion, wherein the first and second textile portions are adapted to supply the electrical element with electrical power. An improved textile device is thereby provided, which is capable of supplying an electrical element with electrical power.
Abstract:
Provided is a conductive composition that has a high conductivity and from which a coating can be formed easily. Also provided is a conductive film that has a high conductivity and in which electric resistance is less likely to increase even during expansion. A conductive composition is prepared by including an elastomer component, a fibrous carbon material having a graphite structure and a fiber diameter of not less than 30 nm, and a conductive carbon black having a structure. A conductive film formed from the conductive composition. The viscosity of the conductive composition formed into a coating with a solid content concentration of not less than 20% by mass, which is measured with a B-type viscometer with an H7 rotor under the conditions of a temperature of 25°C and a rotation speed of 20 rpm, is not more than 200 Pa·s.
Abstract:
Provided is a conductive composition that has a high conductivity and from which a coating can be formed easily. Also provided is a conductive film that has a high conductivity and in which electric resistance is less likely to increase even during expansion. A conductive composition is prepared by including an elastomer component, a fibrous carbon material having a graphite structure and a fiber diameter of not less than 30 nm, and a conductive carbon black having a structure. A conductive film formed from the conductive composition. The viscosity of the conductive composition formed into a coating with a solid content concentration of not less than 20% by mass, which is measured with a B-type viscometer with an H7 rotor under the conditions of a temperature of 25°C and a rotation speed of 20 rpm, is not more than 200 Pa·s.
Abstract:
A porous metal foil of the present invention comprises a two-dimensional network structure composed of metal fibers. This porous metal foil has superior properties and can be obtained in a highly productive and cost effective manner.
Abstract:
An electronic textile (1) comprising: a textile substrate (3) comprising at least one textile substrate conductor (8a-b); and a plurality of electronic energy consuming devices (4) arranged on the textile substrate (3), each of the electronic energy consuming devices (4) being electrically connected to the at least one textile substrate conductor (8a-b) for supply of electrical power to the electronic energy consuming devices (4) from a main power supply (7). The electronic textile (1) further comprises a plurality of local energy supply devices (5a-d; 12a-d; 13a-d) arranged on the textile substrate (3), each of the local energy supply devices (5a-d; 12a-d; 13a-d) being arranged to supply electrical power to at least one of the electronic energy consuming devices (4) being associated with the local energy supply device (5a-d; 12a-d; 13a-d), in addition to electrical power supplied by the main power supply (7).
Abstract:
A textile layer arrangement has a first textile layer (1) and a second textile layer (13), wherein the second textile layer is formed on or above the first textile layer. The textile layer arrangement also has at least one electronic component (3) which is formed between the first textile layer and the second textile layer. The textile layer arrangement further has at least one power line (8), which is formed in at least one boundary region of the textile layer arrangement, for providing electrical power. The textile layer arrangement also has at least one supply line (7), which at least one supply line electrically couples the at least one electronic component to the at least one power line. The at least one power line is arranged at a distance from the at least one electronic component, and the at least one supply line is arranged at an angle with respect to the at least one power line.
Abstract:
The invention relates to a method for determining a functional area of an electronic textile (100;200). The electronic textile comprises a textile substrate having a first plurality of conductors (108a-b;202a-d), a second plurality of conductors (104a-c;204a-d), and a plurality of capacitors (112;212a-p), each capacitor comprising a conductor from the first plurality of conductors (108a-b;202a-d) and a conductor from the second plurality of conductors (104a-c;204a-d), separated by a dielectric (103a), the capacitors (112;212a-p) being distributed across substantially an entire surface of the electronic textile, wherein each capacitor (112;212a-p) has a capacitance of at least 10 pF. The method comprises, for each of the capacitors, the steps of (a) applying (301) a voltage between the conductor from the first plurality of conductors associated with the capacitor and the conductor from the second plurality of conductors associated with the capacitor, (b) detecting (302) an electrical characteristic indicative of a capacitance of the capacitor, (c) evaluating (303) the detected electrical characteristic, and (d) determining (304) whether the capacitor is included in the functional area of the electronic textile based on the evaluation. As the method takes advantages of physical characteristics inherent in the electronic textile, such as the capacitors formed between conductors in the electronic textile, no electronic devices need to be arranged on the electronic textile to determine the functional area.