Abstract:
The present invention relates to a high-molecular-weight recombinant silk or silk-like protein having a molecular weight which is substantially similar to that of native silk protein, and to a micro- or nano-sized spider silk or silk-like fiber having improved physical properties, produced therefrom. The recombinant silk or silk-like protein according to the invention has high molecular weight, like dragline silk proteins from spiders, while a fiber produced therefrom has excellent physical properties compared to a fiber produced from native silk protein. Thus, the recombinant silk or silk-like protein and the spider silk or silk-like fiber produced therefrom will be highly useful in various industrial applications, including bioengineering applications and medical applications.
Abstract:
The present invention relates to recombinant microorganisms having an increased ability to produce butanol, and a method of producing butanol using the same. More specifically, the invention relates to recombinant microorganisms whose ability to produce butanol was increased by manipulation of their metabolic networks, and a method of producing butanol using the same. The recombinant microorganisms having an increased ability to produce butanol comprise a deletion of a gene, which encodes an enzyme that converts acetyl CoA to acetate, in host microorganisms having genes that encode enzymes involved in acetyl CoA and butyryl CoA biosynthetic pathway. The recombinant microorganisms obtained by manipulating the metabolic flux of microorganisms are able to selectively produce butanol with high efficiency, and thus are useful as microorganisms for producing industrial solvents and transportation fuels.
Abstract:
Mutants of various polyhydroxyalkanoate (PHA) synthases capable of synthesizing a lactate polymer (PLA) and a lactate copolymer (PLA copolymer), and a method of preparing a lactate polymer and a lactate copolymer using the same are provided. More specifically, a mutant of polyhydroxyalkanoate synthase set forth in SEQ ID NO: 2, 4, 6, or 8, and a method of preparing lactate polymer and lactate copolymer using the mutant of synthase are provided. The polyhydroxyalkanoate synthase set forth in SEQ ID NO: 2, 4, 6, or 8 can have an activity of synthesizing a lactate polymer and a lactate copolymer by an amino acid sequence mutation affecting an activity of synthesizing a lactate polymer, and can produce a lactate polymer and a copolymer that have different features, respectively, by using the mutants of the synthase.
Abstract translation:提供了能够合成乳酸酯聚合物(PLA)和乳酸酯共聚物(PLA共聚物)的各种聚羟基链烷酸酯(PHA)合酶的突变体,以及使用该突变体制备乳酸酯聚合物和乳酸酯共聚物的方法。 更具体而言,提供了SEQ ID NO:2,4,6或8中所示的聚羟基链烷酸酯合酶的突变体,以及使用该合酶突变体来制备乳酸盐聚合物和乳酸盐共聚物的方法。 在SEQ ID NO:2,4,6或8中列出的聚羟基链烷酸酯合酶可以具有通过影响合成乳酸聚合物活性的氨基酸序列突变合成乳酸酯聚合物和乳酸酯共聚物的活性,并且可以产生 乳酸聚合物和具有不同特征的共聚物,分别通过使用合酶的突变体。
Abstract:
The present invention relates to mutant microorganisms having high ability to produce putrescine in which genes involved in the putrescine degradation or utilization pathway of microorganisms having a putrescine-producing metabolic pathway are inactivated or deleted; and a method for producing putrescine in high yield by culturing the mutant microorganisms under anaerobic conditions. The mutant microorganisms having high ability to produce putrescine are useful for producing a high yield of putrescine which is used in a wide range of industrial applications.
Abstract:
The present invention relates to a recombinant microorganism having an enhanced ability to produce ethanol and butanol and a method for preparing ethanol and butanol using the same, and more particularly to a recombinant microorganism having an enhanced ability to produce ethanol and butanol, into which a gene encoding CoA transferase and a gene encoding alcohol/aldehyde dehydrogenase are introduced, and to a method for preparing ethanol and butanol using the same. The recombinant microorganism according to the present invention, obtained by manipulating metabolic pathways of microorganisms, is capable of producing butanol and ethanol exclusively without producing any byproduct, and thus is useful as a microorganism producing industrial solvents and transportation fuel.
Abstract:
The present invention disclosed is a method for screening metabolites essential for the growth of microorganism using metabolic flux analysis. More specifically, the present invention relates to the method for screening metabolites essential for the growth of microorganism, by selecting a target microorganism, constructing a metabolic network model of the selected microorganism, inactivating the consumption reaction of each of metabolites in the constructed metabolic network model, analyzing the metabolic flux of the metabolites to select metabolites essential for the growth of the microorganism, and confirming the selected metabolites using the utilization of each of the metabolites, defined as flux sum (Φ ). According to the present invention, metabolites essential for the growth of microorganism, and genes involved in the essential metabolites, can be screened in a convenient manner, and drug-target genes against pathogenic microorganisms can be predicted by deleting genes associated with the metabolites screened according to the method.
Abstract:
The present invention relates to an in silico method for improving an organism on the basis of the flux sum (Φ) of metabolites, and more particularly to a method for screening key metabolites that increase the production yield of a useful substance, the method comprising defining the metabolite utilization of an organism for producing a useful substance as flux sum and perturbing the flux sum, as well as a method for improving an organism producing a useful substance, the method comprising deleting and/or amplifying genes associated with the aforementioned screened key metabolites. According to the present invention, the correlation between specific metabolites and useful substance production can be exactly predicted, so that it is possible to develop an organism having increased useful substance production by introducing and/or amplifying and/or deleting genes expressing enzymes associated with the specific metabolites. In addition, it is also possible to increase the production of a useful substance by adding specific metabolites during culture.
Abstract:
The present invention relates to novel rumen bacterial mutants resulted from the disruption of a lactate dehydrogenase gene (ldhA) and a pyruvate formate-lyase gene (pfl) (which are involved in the production of lactic acid, formic acid and acetic acid) from rumen bacteria; a novel bacterial mutant (Mannheimia sp. LPK7) having disruptions of a lactate dehydrogenase gene (ldhA), a pyruvate formate-lyase gene (plf), a phosphotransacetylase gene (pta), and a acetate kinase gene (ackA); a novel bacterial mutant (Mannheimia sp. LPK4) having disruptions of a lactate dehydrogenase gene (ldhA), a pyruvate formate-lyase gene (pfl) and a phosphoenolpyruvate carboxylase gene (ppc) involved in the immobilization of CO2 in a metabolic pathway of producing succinic acid; and a method for producing succinic acid, which is characterized by the culture of the above mutants in anaerobic conditions. The inventive bacterial mutants have the property of producing succinic acid at high concentration while producing little or no organic acids, as compared to the prior wild-type strains of producing various organic acids. Thus, the inventive bacterial mutants are useful as strains for the industrial production of succinic acid.
Abstract:
The present invention relates to a composition containing sHSPs for prevention of protein degradation and a composition for two-dimensional gel electrophoresis. Furthermore, the present invention relates to the improved method of two-dimensional gel electrophoresis, which is characterized by using sHSPs. According to the present invention, decreasing of protein spots was prevented in the two-dimensional gel electrophoresis, thereby obtaining two-dimensional gel with much more protein spots.