Abstract:
A hybrid electro-static actuator for rotating a two-dimensional micro-electromechanical micro-mirror device about two perpendicular axes includes a vertical comb drive for rotating the micro-mirror about a tilt axis, and a parallel plate drive for rotating the micro-mirror about a roll axis. The rotor comb fingers of the comb drive extend from a sub-frame of the micro-mirror, which is only rotatable about the tilt axis, while one of the parallel plate electrodes is mounted on the underside of a main platform, which generally surrounds the sub-frame. The vertical comb drive rotates both the sub-frame and the main platform about the tilt axis, while the parallel plate drive only rotates the main platform about the roll axis.
Abstract:
The invention relates to MEMS-based display devices. In particular, the display devices may include actuators having two mechanically compliant electrodes. In addition, bi-stable shutter assemblies and means for supporting shutters in shutter assemblies are disclosed inclusion in the display devices.
Abstract:
A bi-stable micro-actuator is formed from a first and a second silicon-on-insulator wafer fused together at an electrical contact layer. A cover with a V-groove defines an optical axis. A collimated optical signal source in the V-groove couples an optical signal to an optical port in the V-groove. A mirror surface on a transfer member blocks or reflects the optical signal. The transfer member has a point of support at the first and second end. An expandable structure applies a compressive force between the first and second point of support of the transfer member along a compressive axis to hold the transfer member in a bowed first state or a bowed second state. A control signal applied to a heating element in the expandable structure reduces the compressive force, switching the transfer member to a second state.
Abstract:
In one embodiment, a micro device is formed by depositing a sacrificial layer over a metallic electrode (step 304), forming a moveable structure over the sacrificial layer (step 306), and then etching the sacrificial layer with a noble gas fluoride (step 308). Because the metallic electrode is comprised of a metallic material that also serves as an etch stop in the sacrificial layer etch, charge does not appreciably build up in the metallic electrode. This helps stabilize the driving characteristic of the moveable structure. In one embodiment, the moveable structure is a ribbon in a light modulator.
Abstract:
A micromachine and a method of manufacturing the same which are suitable as or for a micromachine having a first dynamic fine structural portion constituting a driving portion, and a second static fine structural portion performing a switching function or a function of an optical element, the method comprising forming the second static fine structural portion on the first dynamic fine structural portion, or superposing the second static fine structural portion thereon and die transferring the same thereto, whereby the method enables the second fine structure to be formed without using at least a complicated step, such as a silicon process in an intermediate stage of the method, and into a complicated shape easily with a high reproducibility, and contributes to the improvement of the productivity. Especially, when a plurality of elements are arranged in an arrayed state as in a spatial light modulator, the die transfer techniques enable the second fine structure to be reproduced stably as compared with the techniques using a silicon process for forming all parts of a micromachine, whereby the subject method reduces the probability of occurrence of defects to a remarkably low level and contributes to the improvement of the yield.
Abstract:
A microelectromechanical (MEMS) device has a substrate (102), and at least one, generally planar moving element (106), such as an absorber or a mirror, disposed in parallel to the surface of the substrate. An actuator is operatively engageable with the moving element for selectively actuating the moving element between a series of successive, closely spaced positions in a plane horizontal to the surface of the substrate. The MEMS device may be effectively used as a variable attenuator and beam splitter. Various different actuators can be used. Preferably, the device is fabricated using a surface micromachining process.
Abstract:
A microelectromechanical device, comprizing: at least one flexible member formed from an alloy comprising: one or more noble metals selected from the group consisting of gold, platinum and palladium; and one or more alloying elements, the elements selected from iridium, ruthenium, rhodium, palladium, gold, tungsten, osmium and nickel, wherein the one or more alloying elements form a solid solution with the one or more noble metals and wherein the one or more alloying elements are present in an amount sufficient to provide at least one performance characteristic at least 50% greater than the noble metal alone, said performance characteristic selected from the group consisting of yield srength, tensile strength and hardness.
Abstract:
A micro-electro-mechanical (MEM) optical device having a reduced footprint for increasing yield on a substrate. The MEM device includes an optical element having an outer edge and supported by a support structure disposed on a substrate. The support structure is mechanically connected to the substrate through first and second pairs of beams which move the structure to an active position for elevating the optic device above the substrate. When in an elevated position, the optical device can be selectively tilted for deflecting optic signals. The beams are connected at one end to the support structure, at the other end to the substrate and are disposed so that the first and second beam ends are located proximate the optical device outer edge. In a preferred embodiment, a stiction force reducing element is included on the outer edge of the optical device for reducing the contact area between the optic device edge and the substrate.
Abstract:
The invention concerns a method for making an optical micromirror comprising a fixed part, a mobile part, with reflecting means, linked to the fixed part by articulating means. Said method is characterised in that it comprises the following steps: a) producing a stack consisting of a mechanical support (21), a first layer (22) of thermal oxidation material and at least a second layer (26) of material designed to constitute the mobile part; b) providing articulation means (27); c) producing reflecting means (29) on the second layer; d) producing the mobile part by etching at least the second layer of material; e) eliminating the thermal oxidation layer to release said mobile part. The invention is applicable to optical routing or image projection systems.
Abstract:
Optical cross-connect systems (100) involve the general concept of a two dimensional array (104) of microelectromechanical systems (MEMS) tilt mirrors (106) being used to direct light coming from a first optical fiber (110) to a second optical fiber (111). Each MEMS tilt mirror (106) in the two dimensional array (104) can tilt about two non-colinear axes (x,y) and is suspended by a plurality of suspension arms (450) attached to a substrate.