Abstract:
Embodiments of the present disclosure describe a die with integrated microphone device using through-silicon vias (TSVs) and associated techniques and configurations. In one embodiment, an apparatus includes an apparatus comprising a semiconductor substrate having a first side and a second side disposed opposite to the first side, an interconnect layer formed on the first side of the semiconductor substrate, a through-silicon via (TSV) formed through the semiconductor substrate and configured to route electrical signals between the first side of the semiconductor substrate and the second side of the semiconductor substrate, and a microphone device formed on the second side of the semiconductor substrate and electrically coupled with the TSV. Other embodiments may be described and/or claimed.
Abstract:
An MEMS double-layer suspension microstructure manufacturing method, comprising: providing a substrate (100); forming a first dielectric layer (200) on the substrate (100); patterning the first dielectric layer (200) to prepare a first film body (210) and a cantilever beam (220) connected to the first film body (210); forming a sacrificial layer (300) on the first dielectric layer (200); patterning the sacrificial layer (300) located on the first film body (210) to make a recess portioned portion (310) for forming a support structure (420), with the first film body (210) being exposed at the bottom of the recess portioned portion (310); forming a second dielectric layer (400) on the sacrificial layer (300); patterning the second dielectric layer (400) to make the second film body (410) and the support structure (420), with the support structure (420) being connected to the first film body (210) and the second film body (410); and removing part of the substrate under the first film body (210) and removing the sacrificial layer (300) to obtain the MEMS double-layer suspension microstructure. In addition, an MEMS infrared detector is also disclosed.
Abstract:
The present invention relates to a micromechanical device comprising a multi-layer micromechanical structure including only homogenous silicon material. The device layer comprises at least a rotor and at least two stators. At least some of the rotor and at least two stators are at least partially recessed to at least two different depths of recession from a first surface of the device layer and at least some of the rotor and at least two stators are at least partially recessed to at least two different depths of recession from a second surface of the device layer.
Abstract:
A process for fabricating a suspended microelectromechanical system (MEMS) structure comprising epitaxial semiconductor functional layers that are partially or completely suspended over a substrate. A sacrificial release layer and a functional device layer are formed on a substrate. The functional device layer is etched to form windows in the functional device layer defining an outline of a suspended MEMS device to be formed from the functional device layer. The sacrificial release layer is then etched with a selective release etchant to remove the sacrificial release layer underneath the functional layer in the area defined by the windows to form the suspended MEMS structure.
Abstract:
Systems and methods that protect CMOS layers from exposure to a release chemical are provided. The release chemical is utilized to release a micro-electromechanical (MEMS) device integrated with the CMOS wafer. Sidewalls of passivation openings created in a complementary metal-oxide-semiconductor (CMOS) wafer expose a dielectric layer of the CMOS wafer that can be damaged on contact with the release chemical. In one aspect, to protect the CMOS wafer and prevent exposure of the dielectric layer, the sidewalls of the passivation openings can be covered with a metal barrier layer that is resistant to the release chemical. Additionally or optionally, an insulating barrier layer can be deposited on the surface of the CMOS wafer to protect a passivation layer from exposure to the release chemical.
Abstract:
A method of manufacturing a plurality of through-holes (132) in a layer of material by subjecting the layer to directional dry etching to provide through-holes (132) in the layer of material; For batch-wise production, the method comprises - after a step of providing a layer of first material (220) on base material and before the step of directional dry etching, providing a plurality of holes at the central locations of pits (210), - etching base material at the central locations of the pits (210) so as to form a cavity (280) with an aperture (281), - depositing a second layer of material (240) on the base material in the cavity (280), and - subjecting the second layer of material (240) in the cavity (280) to said step of directional dry etching using the aperture (281) as the opening (141) of a shadow mask.
Abstract:
Embodiments of the present disclosure describe a die with integrated microphone device using through-silicon vias (TSVs) and associated techniques and configurations. In one embodiment, an apparatus includes an apparatus comprising a semiconductor substrate having a first side and a second side disposed opposite to the first side, an interconnect layer formed on the first side of the semiconductor substrate, a through-silicon via (TSV) formed through the semiconductor substrate and configured to route electrical signals between the first side of the semiconductor substrate and the second side of the semiconductor substrate, and a microphone device formed on the second side of the semiconductor substrate and electrically coupled with the TSV. Other embodiments may be described and/or claimed.
Abstract:
A method of making a nanostructure and nanostructured articles by depositing a layer to a major surface of a substrate by plasma chemical vapor deposition from a gaseous mixture while substantially simultaneously etching the surface with a reactive species. The method includes providing a substrate; mixing a first gaseous species capable of depositing a layer onto the substrate when formed into a plasma, with a second gaseous species capable of etching the substrate when formed into a plasma, thereby forming a gaseous mixture; forming the gaseous mixture into a plasma; and exposing a surface of the substrate to the plasma, wherein the surface is etched and a layer is deposited on at least a portion of the etched surface substantially simultaneously, thereby forming the nanostructure. The substrate can be a (co)polymeric material, an inorganic material, an alloy, a solid solution, or a combination thereof. The deposited layer can include the reaction product of plasma chemical vapor deposition using a reactant gas comprising a compound selected from the group consisting of organosilicon compounds, metal alkyl compounds, metal isopropoxide compounds, metal acetylacetonate compounds, metal halide compounds, and combinations thereof. Nanostructures of high aspect ratio and optionally with random dimensions in at least one dimension and preferably in three orthogonal dimensions can be prepared.