摘要:
A resin composition for semiconductor encapsulation having goodmoldability, of which the cured product has effective electromagnetic wave shieldability, is provided. A resin composition for semiconductor encapsulation, containing spherical sintered ferrite particles having the following properties (a) to (c) : (a) the soluble ion content of the particles is at most 5 ppm; (b) the mean particle size of the particles is from 10 to 50 µm; (c) the crystal structure of the particles by X-ray diffractiometry is a spinel structure.
摘要:
The present invention relates to ferrite particles for bonded magnets and a resin composition for bonded magnets which can provide a bonded magnet molded product capable of realizing a high magnetic force and a complicated multipolar waveform owing to such a feature that the ferrite particles are readily and highly oriented against an external magnetic field in a flowing resin upon injection molding, as well as a bonded magnet molded product obtained by injection-molding the above composition. According to the present invention, there are provided ferrite particles for bonded magnets which have a crystallite size of not less than 500 nm as measured in an oriented state by XRD, and an average particle diameter of not less than 1.30 µm as measured by Fisher method; a resin composition for bonded magnets; and a molded product obtained by injection-molding the composition.
摘要:
An object of the present invention is to enhance a coercive force of magnetic particles by promoting formation of a continuous R-rich grain boundary phase in a crystal grain boundary of a magnetic phase of the particles, and to thereby obtain R-T-B-based rare earth magnet particles further having a high residual magnetic flux density. The present invention relates to production of R-T-B-based rare earth magnet particles capable of exhibiting a high coercive force even when a content of Al therein is reduced, and a high residual magnetic flux density, in which formation of an R-rich grain boundary phase therein can be promoted by heat-treating Al-containing R-T-B-based rare earth magnet particles obtained by HDDR treatment in vacuum or in an Ar atmosphere at a temperature of not lower than 670°C and not higher than 820°C for a period of not less than 30 min and not more than 300 min.
摘要:
The present invention provides ferromagnetic iron nitride particles, in particular, in the form of fine particles, and a process for producing the ferromagnetic iron nitride particles. The present invention relates to a process for producing ferromagnetic iron nitride particles, comprising the steps of mixing metallic iron obtained by mixing at least one compound selected from the group consisting of a metal hydride, a metal halide and a metal borohydride with an iron compound, and then subjecting the obtained mixture to heat treatment, with a nitrogen-containing compound; and then subjecting the resulting mixture to heat treatment, in which a reduction step and a nitridation step of the iron compound are conducted in the same step, and the at least one compound selected from the group consisting of a metal hydride, a metal halide and a metal borohydride is used as a reducing agent in the reduction step, whereas the nitrogen-containing compound is used as a nitrogen source in the nitridation step.
摘要:
The present invention provides a magnetic carrier for an electrophotographic developer which has an excellent durability and a stable charging property and is free from occurrence of spent toner thereonto, and a two-component system developer comprising the magnetic carrier for an electrophotographic developer and a toner. The present invention relates to a core material of a magnetic carrier for an electrophotographic developer comprising spherical composite particles comprising at least ferromagnetic iron oxide fine particles and a cured phenol resin and having an average particle diameter of 1 to 100 µ m, a resin index of the spherical composite particles being within the range of 35 to 80%, and a magnetic carrier obtained by coating a surface of respective particles of the magnetic carrier core material with a resin.
摘要:
The present invention provides a precursor of positive electrode active substance particles for non-aqueous electrolyte secondary batteries which have a high discharge voltage and a high discharge capacity, hardly suffer from side reactions with an electrolyte solution, and are excellent in cycle characteristics, positive electrode active substance particles for non-aqueous electrolyte secondary batteries, and processes for producing these particles, and a non-aqueous electrolyte secondary battery. The present invention relates to positive electrode active substance particles for non-aqueous electrolyte secondary batteries having a spinel structure with a composition represented by the following chemical formula (1), in which the positive electrode active substance particles satisfy the following characteristic (A) and/or characteristic (B) when indexed with Fd-3m in X-ray diffraction thereof: (A) when indexed with Fd-3m in X-ray diffraction of the positive electrode active substance particles, a ratio of I(311) to I(111) [I(311)/I(111)] is in the range of 35 to 43%, and/or (B) when indexed with Fd-3m in X-ray diffraction of the positive electrode active substance particles, a gradient of a straight line determined by a least square method in a graph prepared by plotting sinθ in an abscissa thereof and Bcosθ in an ordinate thereof wherein B is a full-width at half maximum with respect to each peak position 2θ (10 to 90°) is in the range of 3.0 x 10 -4 to 20.0 x 10 -4 ; and
Chemical Formula (1) Li 1+x Mn 2-y-z Ni y M z O 4
wherein x, y, z fall within the range of -0.05 ≤ x ≤ 0.15, 0.4 ≤ y ≤ 0.6 and 0 ≤ z ≤ 0.20, respectively; and M is at least one element selected from the group consisting of Mg, Al, Si, Ca, Ti, Co, Zn, Sb, Ba, W and Bi.
摘要:
Provided is a carbon material for negative electrode capable of suppressing capacity degradation due to repeated charge and discharge cycles, storage while being charged or floating charge. A graphite material having lattice distortion for lithium-ion secondary battery negative electrode is obtained by a manufacturing method comprising the steps of: pulverizing and classifying a raw coke composition obtained from a heavy-oil composition undergone coking by delayed coking process, the raw coke composition having a H/C atomic ratio that is a ratio of hydrogen atoms H and carbon atoms C of 0.30 to 0.50 and having a micro-strength of 7 to 17 mass% to obtain powder of the raw coke composition; giving compressive stress and shear stress to the powder of the raw coke composition so that average circularity is 0.91 to 0.97 to obtain round powder; heating the round powder to obtain a carbonized composition; and graphitizing the carbonized composition. The graphite material has a size of a crystallite Lc(112) of 4 nm to 30 nm, the size being calculated from a (112) diffraction line obtained by X-ray wide-angle diffractometry, and has lattice distortion in the range from 0.001 to 0.085, the lattice distortion being calculated from a (004) diffraction line and a (006) diffraction line.