Abstract:
A spectrophotometer including: a) a light source switching mechanism (20) for switching a plurality of light sources (1,2) by swinging a light source mirror (3); b) a filter selecting mechanism (19); c) a diffraction grating rotating mechanism (10); and d) a controller for determining the operation origins of the three driving mechanisms using a rough origin sensor (21) provided for the diffraction grating rotating mechanism and a photometer. The operation of the controller is to: i) determine an origin of the movement of the filter by making an end of the filter frame to touch a stopper; ii) determine a rough origin of the diffraction grating using the rough origin sensor; and iii) determine an origin of the movement of the light source mirror and a precise origin of the movement of the diffraction grating by detecting the position at which the photometer detects the maximum intensity of light.
Abstract:
In a spectrophotometer having an oscillating grating (13), an automatic calibration system is provided to ensure that the instrument constants are recomputed before each measurement of an unknown sample. In the system, whenever a reference scan is carried out, a second scan through an absorbance standard is carried out automatically and the data obtained is used to correct the instrument coefficients relating the angular position of the grating to the wavelength. The corrected coefficients are then stored to be used in the measurement of the unknown sample immediately thereafter. For near infrared spectrum measurements, the absorbance standard is a polystyrene plate. For visual measurements, the absorbance standard is a didymium plate. The didymium plate is mounted on the polystyrene plates eclipse a portion of the polystyrene plate.
Abstract:
A scanning monochromator uses a pulse-driven micro-stepping motor (20) to drive a spectral-dispersion element (33) via a reduction-gear harmonic drive (21). The motor (20) is directly coupled to the input hub of the reduction-gear drive (21), and the output hub of the reduction-gear drive directly supports the spectral-dispersion element (33). By selecting a motor (20) with a great number of steps per revolution, and a harmonic drive (21) with a great reduction ratio, a resolution of 5 million pulsed steps is available, per single rotation of the output hub of the reduction-gear drive. This translates into more than 600,000 incremental angular-displacement steps over a usable 45° range of dispersion-element rotation.
Abstract:
An optical grating is oscillated at a high rate to scan a narrow wavelength band of light through the spectrum dispersed by the grating. The grating is connected integrally with the rotor of a motor, which is energized to oscillate its rotor between selected limits. The direction of rotation of the motor is controlled by an H drive circuit connected to a coil of the motor. The speed of the motor is controlled by a pulse train applied to the motor coil through the H drive. The pulse train has a duty cycle varying inversely with the motor speed. The duty cycle of the pulse train is controlled by a counter which is connected to count high frequency pulses and which is reset each time the grating rotates through an angular increment. The limits of the oscillation of the grating and the rate of rotation of the grating between the limits are selectively variable. Output readings from the spectrophotometer are taken at equal angular increments of the grating and these readings are converted to values occurring at equal wavelength increments by a computer.
Abstract:
A system for rapid-scan spectral analysis comprising a concave holographic diffraction grating (18) continuously rotated at a substantially constant angular velocity to provide a rapid scanning monochromator (a monochromator is used to transfer nominal regions of wavelengths out of the continuous light source). The unique sampling circuitry uses an optical shaft encoder (42). The angular velocity and angular acceleration of the grating (18) are calculated from time measurements, just before the first wavelength of interest falls on the detector. This information is used to control the Analog to Digital converter sampling rate across the region of interest. The samples as a function of time are stored in a memory buffer (58) so that each data point corresponds to a wavelength.
Abstract:
To provide sufficient sensitivity, spectral resolution and speed of measurement for field environmental measurements in a portable spectroradiometer, a silicon photodiode receives light: (1) having a bandwidth in the range of between 2 and 15 nm (nanometers) from a pivotable concave holographic diffraction grating within the wavelength range of between 250 and 1150 nm at a scanning rate in the range of 20 to 100 nm per second; (2) having stray light of high intensity and undesired frequencies and the shorter wavelength harmonics of the selected frequency range blocked by filters; and (3) having flux of a least 10 microwatts per square meter of diffuser plate for each nanometer of bandwidth. Automatic electrical zeroing is obtained by blocking all light once at the beginning of each scan, obtaining an electrical drift-related signal and using the drift signal to ad- just the measured signal during the scan. Several different sensing interfaces can be used, including a quartz, light fiber probe having at least a 50% packing density and a cone angle of at least 24 degrees. The data and the programming storage is at least 30K bytes but the instrument uses no more than two watts of power when the instrument is not scanning.