Abstract:
An optical laminate body including: a substrate; and an adhesive layer formed on the substrate, wherein the optical laminate body is used such that a surface thereof on the adhesive layer side is attached to a glass-made light-emitting surface member, a relationship n3 ‰¥ n3 ‰¥ n1 is satisfied where n1 is a refractive index of the glass that constitutes the light-emitting surface member, n2 is a refractive index of the adhesive layer, and n3 is a refractive index of the substrate, the adhesive layer is composed of an acrylic adhesive composition containing an acrylic resin (A), and the acrylic resin (A) is a copolymer of a copolymerizable component [I] containing 40% by weight to 93% by weight of an aromatic ring-containing monomer (a1), and 7% by weight to 60% by weight of a hydroxy group-containing monomer (a2), the weight average molecular weight of the acrylic resin (A) being 200,000 or less.
Abstract:
A masterbatch product suitable for injection molding, comprising: a first portion comprised of polyethylene terephthalate (PET); and a second portion comprised of a graphene nanoplatelet material comprised of graphene nanoplatlets that is compounded with the first portion to form the masterbatch product suitable for injection molding, wherein the graphene nanoplatlets comprises from two to fifteen percent by weight of the masterbatch.
Abstract:
There is provided a fiber reinforced thermoplastic resin molded article comprising (A) carbon fibers, (B) graphite and (C) a thermoplastic resin, wherein the carbon fibers (A), the graphite (B) and the thermoplastic resin (C) are contained in amounts of 1 to 30 parts by weight, 1 to 40 parts by weight and 30 to 98 parts by weight, respectively, relative to the total amount, i.e., 100 parts by weight, of the carbon fibers (A), the graphite (B) and the thermoplastic resin (C), the weight average fiber length of the carbon fibers (A) is 0.3 to 3 mm and the specific gravity of the molded article is 1.1 to 1.9 g/cm 3 . A fiber reinforced thermoplastic resin molded article having excellent bending strength and heat conductivity is provided.
Abstract:
Disclosed herein are laser activatable compositions. One composition may comprise: about 35% to about 75% by weight of at least one polyamide resin, preferably a 9,T resin; about 0.1% to about 20% by weight of a laser direct structuring additive; the laser activatable additive being operative to plate the composition upon being activated by a laser; about 0.5% to 20% by weight of a phosphorus-containing additive, preferably an organo phosphinate salt; and about 10% to 50% by weight of a reinforcing fiber, preferably a glass fiber having a substantially circular cross-section, the substantially circular cross-section having a diameter of 10 microns or less; where all weight percents are based on the total weight of the composition. Further embodiments provide compositions further comprising one or more organic, metallic, or mineral fillers, pigments, or combinations thereof. Also disclosed are methods of preparing these compositions and articles produced therefrom.
Abstract:
A thermoplastic resin composition and a molded article formed of the same. The thermoplastic resin composition includes: a thermoplastic resin including a rubber-modified vinyl graft copolymer and an aromatic vinyl copolymer resin; polyalkylene glycol; and zinc oxide, wherein the zinc oxide has an average particle diameter of 0.5 µm to 3 µm and a BET specific surface area of 1 m 2 /g to 10 m 2 /g. The thermoplastic resin composition and the molded article formed thereof have good properties in terms of discoloration resistance, antibacterial resistance, and the like even after being irradiated with ionizing radiation.
Abstract:
The present invention is to provide a conductive composition which can form bonded portion capable of maintaining a thickness of the bonded portion and can maintain bonding strength, and electronic parts using the same. The present invention is the conductive composition comprising (A) silver fine particles having a number average particle diameter of primary particles of 40 nm to 400 nm, (B) a solvent and (C) thermoplastic resin particles having a maximal value of an endothermic peak in a DSC chart obtained by a measurement using a differential scanning calorimeter is within the range of 80°C to 170°C. The maximal value of the endothermic peak in a DSC chart obtained by a measurement using a differential scanning calorimeter of the thermoplastic resin particles (C) is preferably in the range of 110°C to 140°C.
Abstract:
An object of the present invention is to provide an HNBR composition and an HNBR crosslinked body excellent in abrasion resistance and pressure resistance. The object is achieved by an HNBR composition containing 3 to 20 parts by weight of carbon fibers or wollastonite as a hard filler per 100 parts by weight of a hydrogenated nitrile rubber and containing 72 to 87 parts by weight of a carbon black having an average particle diameter of 40 to 50 nm, an iodine adsorption of 35 to 49 g/kg, and a DBP oil absorption of 100 to 160 ml/100 g, as well as an HNBR crosslinked body acquired by crosslinking the HNBR composition.
Abstract:
A masterbatch product suitable for injection molding, comprising: a first portion comprised of polyethylene terephthalate (PET); and a second portion comprised of a graphene nanoplatelet material comprised of graphene nanoplatlets that is compounded with the first portion to form the masterbatch product suitable for injection molding, wherein the graphene nanoplatlets comprises from two to fifteen percent by weight of the masterbatch.
Abstract:
The present invention relates to the use of a surface-reacted calcium carbonate as an anti-blocking agent in polymer(s) containing compositions, wherein the surface-reacted calcium carbonate is a reaction product of natural ground or precipitated calcium carbonate with carbon dioxide and one or more H 3 O + ion donors in an aqueous medium, wherein the carbon dioxide is formed in situ by the H 3 O + ion donors treatment and/or is supplied from an external source, an anti-blocking agent comprising surface-reacted calcium carbonate or a combination of surface reacted calcium carbonate and mineral material, a method for controlling the blocking of polymer(s) containing compositions, a polymer(s) containing composition comprising surface reacted calcium carbonate or a combination of surface reacted calcium carbonate and mineral material, a coating composition comprising such polymer(s) containing composition, as well as a substrate coated with such coating composition.
Abstract:
A nanometal ink capable of forming a metal film that exhibits good adhesion to a substrate and has low resistance. The nanometal ink is a baking-type nanometal ink, and contains metal nanoparticles, a polymerizable compound, a polymerization reaction initiator, a volatile liquid medium, and a dispersant. The polymerization reaction initiator is to be activated by the action of heat and/or light, to allow polymerization of the polymerizable compound to proceed. The dispersant includes a C 6-14 alkylamine.