Abstract:
A system and method for collecting Raman data sets without the 'contaminating' effect of luminescence emitted photons. Using a fram transfer CCD for time resolved data collection, Raman imaging may be performed without photobleaching the sample. The system may include a light source, a frame transfer CCD, an optical lens and at least one controller. The light source illuminates the sample with a plurality of photons to generate scattered photons from the sample. The frame transfer CCD has an image array and a storage array. The optical lens collects scattered photons and directs the scattered photons to the image array. The controller transfers a Raman data set representative of the scattered photons from the image array to the storage array.
Abstract:
An optical interrogation system is described herein that can interrogate a label-independent-detection (LID) biosensor and monitor a biological event on top of the biosensor without suffering from problematical parasitic reflections and/or problematical pixelation effects. In one embodiment, the optical interrogation system is capable of interrogating a biosensor and using a low pass filter algorithm to digitally remove problematic parasitic reflections contained in the spectrum of an optical resonance which makes it easier to determine whether or not a biological event occurred on the biosensor. In another embodiment, the optical interrogation system is capable of interrogating a biosensor and using an oversampling/smoothing algorithm to reduce oscillations in the estimated location of an optical resonance caused by the problematical pixelation effect which makes it easier to determine whether or not a biological event occurred on the biosensor.
Abstract:
A light amount is increased and an analyzing accuracy can be increased in accordance with an enlargement of a load angle.. However, scattered light tends to be loaded into a light receiving element in an analysis accompanied by scattered light, and the dynamic range of a concentration which can be measured becomes narrow. In the invention, light is dispersed by a light dispersing portion (20), a load angle of the received light is changed per wavelength, the load angle is made larger for light of a wavelength having a small light amount, and the load angle is made smaller for light of a wavelength having a large light amount and used for an analysis accompanied by scattered light. Accordingly, it is possible to gain a dynamic range of a concentration which can be measured in the analysis accompanied by scattered light, while increasing the light amount and maintaining the analyzing accuracy.
Abstract:
The disclosure relates to a portable system for obtaining a spatially accurate wavelength-resolved image of a sample having a first and a second spatial dimension that can be used for the detection of hazardous agents by irradiating a sample with light, forming an image of all or part of the sample using Raman shifted light from the sample, and analyzing the Raman shifted light for patterns characteristic of one or more hazardous agents.
Abstract:
Techniques are described for the detection of multiple target species in real-time PCR (polymerase chain reaction). For example, a system is described that includes a data acquisition device and a detection device coupled to the data acquisition device. The detection device includes a rotating disk having a plurality of process chambers having a plurality of species that emit fluorescent light at different wavelengths. The device further includes a plurality of optical modules. Each of the optical modules is optically configured to excite the species and capture fluorescent light emitted by the species at different wavelengths. A fiber optic bundle coupled to the plurality of optical modules conveys the fluorescent light from the multiple optical modules to a single detector.
Abstract:
A multi-spectral aerosol particle measurement system (100) including a long wavelength (e g, UV light, 340 nm) emitter (102) and a short wavelength (e g, UV light, 280 nm) emitter (108), an emitter reflector (114) such as a dichroic filter, that is transparent to long wavelength radiation (104) and reflective to short wavelength radiation (110), a flowing fluid (116) that contains particles (118) that may intersect first direction (106) such that they are sequentially exposed, producing elastic and inelastic emission wavelengths, including fluorescence, a collimating lens (122), and a detector reflector (124) to reflect short wavelength radiation and pass fluorescent radiation through one of a plurality of filters (126a-d) placed in the optical path of a detector (128) The detector reflector (124) reflects light having a wavelength shorter than 300 nm, so elastic scatter is detected by the light scatter detector (190).
Abstract:
A spectrophotometric instrument is comprised of a processor, a probe (402) having a tissue engaging surface (404) with an aperture (422) therethrough and a light source producing measurement light signals and optically coupled to the probe via a first optical path (420). A partially reflective first reflecting member (430) is located in the probe and has a generally elliptical profile positioned to reflect a first portion of the measurement light signals to the tissue aperture and to transmit a second portion of the measurement light signals through the first reflecting member. A second reflecting member (456) is located in the probe and has a generally elliptical profile positioned to reflect the measurement light signals transmitted through the first reflecting member. A second optical path (428) has a distal end positioned in the probe to receive to receive light signals transmitted through the tissue sample and a proximal end coupled to the processor.
Abstract:
An apparatus for directing a light path sequentially between multiple positions. A rotary switch rotates a light beam from a prism relative to a plurality of optical elements arranged radially on a switch body. In one embodiment, a prism rotates in the switch body, causing the light beam to sweep through the optical elements. In another embodiment, the switch body rotates about a prism transmitting the light beam. In various embodiments, the optical elements include a photodetector, a filter and a photodetector pair, a reflector, and a filter and a reflector.
Abstract:
An apparatus and method are provided. In particular, at least one first electro-magnetic radiation may be provided to a sample and at least one second electro-magnetic radiation can be provided to a non-reflective reference. A frequency of the first and/or second radiations varies over time. An interference is detected between at least one third radiation associated with the first radiation and at least one fourth radiation associated with the second radiation. Alternatively, the first electro-magnetic radiation and/or second electro-magnetic radiation have a spectrum which changes over time. The spectrum may contain multiple frequencies at a particular time. In addition, it is possible to detect the interference signal between the third radiation and the fourth radiation in a first polarization state. Further, it may be preferable to detect a further interference signal between the third and fourth radiations in a second polarization state which is different from the first polarization state. The first and/or second electro-magnetic radiations may have a spectrum whose mean frequency changes substantially continuously over time at a tuning speed that is greater than 100 Tera Hertz per millisecond.
Abstract:
[Purpose] The object of the present invention is to provide a spectroscope having both a wavelength resolving power and a spatial resolving power. [Solving Means] A spectroscope comprises an incident slit 12, a collimator lens type optical system 14 that makes the light rays having passed through the incident slit 12 parallel light rays, a reflection type diffraction grating 16 that receives the parallel light rays and, according to the wavelength, outputs these light rays at different angles, a condenser lens type optical system 14 that condenses the output light from the diffraction grating 16, and two-dimensional light-receiving means 16 having a two-dimensional light-receiving surface that detects the light rays that have been condensed by the condenser lens type optical system. The collimator lens type optical system and the condenser lens type optical system are disposed so that the angle 2γ defined between the optical axis of the collimator lens type optical system and the optical axis of the condenser lens type optical system may be acute; the condenser lens type optical system is disposed so that the distance between itself and the diffraction grating may be shorter than the distance between the collimator lens type optical system and the diffraction grating; and a setting is made so that a normal line vector at the central portion of the reflection surface of the diffraction grating may be directed, from a bisector of the angle defined between the optical axis of the collimator lens type optical system and the optical axis of the condenser lens type optical system, toward a side where the collimator lens type optical system is disposed.