摘要:
Schottky barrier semiconductor devices are provided including a wide bandgap semiconductor layer and a gate on the wide bandgap semiconductor layer. The gate includes a metal layer on the wide bandgap semiconductor layer including a nickel oxide (NiO) layer. Related methods of fabricating devices are also provided herein.
摘要:
A passivated semiconductor structure and associated method are disclosed. The structure includes a silicon carbide substrate or layer; an oxidation layer on the silicon carbide substrate for lowering the interface density between the silicon carbide substrate and the thermal oxidation layer; a first sputtered non-stoichiometric silicon nitride layer on the thermal oxidation layer for reducing parasitic capacitance and minimizing device trapping; a second sputtered non-stoichiometric silicon nitride layer on the first layer for positioning subsequent passivation layers further from the substrate without encapsulating the structure; a sputtered stoichiometric silicon nitride layer on the second sputtered layer for encapsulating the structure and for enhancing the hydrogen barrier properties of the passivation layers; and a chemical vapor deposited environmental barrier layer of stoichiometric silicon nitride for step coverage and crack prevention on the encapsulant layer.
摘要:
Embodiments of a Silicon Nitride (SiN) passivation structure for a semiconductor device are disclosed. In general, a semiconductor device includes a semiconductor body and a SiN passivation structure over a surface of the semiconductor body. In one embodiment, the SiN passivation structure includes one or more Hydrogen-free SiN layers on, and preferably directly on, the surface of the semiconductor body, a Hydrogen barrier layer on, and preferably directly on, a surface of the one or more Hydrogen-free SiN layers opposite the semiconductor body, and a Chemical Vapor Deposition (CVD) SiN layer on, and preferably directly on, a surface of the Hydrogen barrier layer opposite the one or more Hydrogen-free SiN layers. The Hydrogen barrier layer preferably includes one or more oxide layers of the same or different compositions. Further, in one embodiment, the Hydrogen barrier layer is formed by Atomic Layer Deposition (ALD).
摘要:
A method of producing an ohmic contact and a resulting ohmic contact structure are disclosed. The method includes the steps of forming a deposited film of nickel and silicon on a silicon carbide surface at a temperature below which either element will react with silicon carbide and in respective proportions so that the atomic fraction of silicon in the deposited film is greater than the atomic fraction of nickel, and heating the deposited film of nickel and silicon to a temperature at which nickel-silicon compounds will form with an atomic fraction of silicon greater than the atomic fraction of nickel but below the temperature at which either element will react with silicon carbide. The method can further include the step of annealing the nickel-silicon compound to a temperature higher than the heating temperature for the deposited film, and within a region of the phase diagram at which free carbon does not exist.
摘要:
Embodiments of a Nickel-rich (Ni-rich) Schottky contact for a semiconductor device and a method of fabrication thereof are disclosed. Preferably, the semiconductor device is a radio frequency or power device such as, for example, a High Electron Mobility Transistor (HEMT), a Schottky diode, a Metal Semiconductor Field Effect Transistor (MESFET), or the like. In one embodiment, the semiconductor device includes a semiconductor body and a Ni-rich Schottky contact on a surface of the semiconductor body. The Ni-rich Schottky contact includes a multilayer Ni-rich contact metal stack. The semiconductor body is preferably formed in a Group III nitride material system (e.g., includes one or more Gallium Nitride (GaN) and/or Aluminum Gallium Nitride (AlGaN) layers). Because the Schottky contact is Ni-rich, leakage through the Schottky contact is substantially reduced.
摘要:
A method of fabricating an integrated circuit on a silicon carbide substrate is disclosed that eliminates wire bonding that can otherwise cause undesired inductance. The method includes fabricating a semiconductor device in epitaxial layers on a surface of a silicon carbide substrate and with at least one metal contact for the device on the uppermost surface of the epitaxial layer. The opposite surface of the substrate is then ground and polished until it is substantially transparent. The method then includes masking the polished surface of the silicon carbide substrate to define a predetermined location for at least one via that is opposite the device metal contact on the uppermost surface of the epitaxial layer and etching the desired via in steps. The first etching step etches through the silicon carbide substrate at the desired masked location until the etch reaches the epitaxial layer. The second etching step etches through the epitaxial layer to the device contacts. Finally, metallizing the via provides an electrical path from the first surface of the substrate to the metal contact and to the device on the second surface of the substrate.
摘要:
Reflective ohmic contacts for n-type silicon carbide include a layer consisting essentially of nickel on the silicon carbide. The layer consisting essentially of nickel is configured to provide an ohmic contact to the silicon carbide, and to allow transmission therethrough of optical radiation that emerges from the silicon carbide. A reflector layer is on the layer consisting essentially of nickel, opposite the silicon carbide. A barrier layer is on the reflector layer opposite the layer consisting essentially of nickel, and a bonding layer is on the barrier layer opposite the reflector layer. It has been found that the layer consisting essentially of nickel and the reflector layer thereon can provide a reflective ohmic contact for silicon carbide that can have low ohmic losses and/or high reflectivity.
摘要:
The present disclosure relates to a Schottky contact for a semiconductor device. The semiconductor device has a body formed from one or more epitaxial layers, which reside over a substrate. The Schottky contact may include a Schottky layer, a first diffusion barrier layer, and a third layer. The Schottky layer is formed of a first metal and is provided over at least a portion of a first surface of the body. The first diffusion barrier layer is formed of a silicide of the first metal and is provided over the Schottky layer. The third layer is formed of a second metal and is provided over the first diffusion barrier layer. In one embodiment, the first metal is nickel, and as such, the silicide is nickel silicide. Various other layers may be provided between or above the Schottky layer, the first diffusion barrier layer, and the third layer.