摘要:
Genes that are up- or down-regulated during differentiation provide important leverage by which to characterize and manipulate early-stage pluripotent stem cells. Over 35,000 unique transcripts have been amplified and sequenced from undifferentiated human embryonic stem cells, and three types of differentiated progeny. Statistical analysis of the assembled transcripts identified genes that alter expression levels as differentiation proceeds. The expression profile provides a marker system that has been used to identify particular culture components for maintaining the undifferentiated phenotype. The gene products can also be used to promote differentiation; to assess other relatively undifferentiated cells (such as cancer cells); to control gene expression; or to separate cells having desirable characteristics. Manipulation of particular genes can be used to forestall or focus the differentiation process, en route to producing a specialized homogenous cell population suitable for human therapy.
摘要:
This invention provides a system for producing differentiated cells from a stem cell population for use wherever a relatively homogenous cell population is desirable. The cells contain an effector gene under control of a transcriptional control element (such as the TERT promoter) that causes the gene to be expressed in relatively undifferentiated cells in the population. Expression of the effector gene results in depletion of undifferentiated cells, or expression of a marker that can be used to remove them later. Suitable effector sequences encode a toxin, a protein that induces apoptosis, a cell-surface antigen, or an enzyme (such as thymidine kinase) that converts a prodrug into a substance that is lethal to the cell. The differentiated cell populations produced according to this disclosure are suitable for use in tissue regeneration, and non-therapeutic applications such as drug screening.
摘要:
This invention provides a new procedure for generating cardiomyocyte lineage cells from embryonic stem cells for use in regenerative medicine. Differentiating by way of embryoid body formation or in serum is no longer required. Instead, the stem cells are plated onto a solid substrate, and differentiated in the presence of select factors and morphogens. After enrichment for cells with the appropriate phenotype, the cells are allowed to cluster into cardiac bodiesTM, which are remarkably homogeneous and suitable for the treatment of heart disease.
摘要:
This disclosure provides an improved system for culturing human pluripotent stem cells. Traditionally, pluripotent stem cells are cultured on a layer of feeder cells (such as mouse embryonic fibroblasts) to prevent them from differentiating. In the system described here, the role of feeder cells is replaced by components added to the culture environment that support rapid proliferation without differentiation. Effective features are a suitable support structure for the cells, and an effective medium that can be added fresh to the culture without being preconditioned by another cell type. Culturing human embryonic stem cells in fresh medium according to this invention causes the cells to expand surprisingly rapidly, while retaining the ability to differentiate into cells representing all three embryonic germ layers. This new culture system allows for bulk proliferation of pPS cells for commercial production of important products for use in drug screening and human therapy.
摘要:
The present application describes the new methods for the differentiation of primate pluripotent stem cells into cardiomyocyte-lineage cells. The methods utilize sequential culturing of the primate pluripotent stem cells in certain growth factors to produce cardiomyocyte-lineage cells. In certain embodiments of the invention, the population of cells produced by the sequential culturing is further enriched for cardiomyocyte-lineage cells so as to produce a higher percentage of those cells.
摘要:
This disclosure provides an improved system for culturing human pluripotent stem (pPS) cells in the absence of feeder cells. The role of the feeder cells can be replaced by supporting the culture on an extracellular matrix, and culturing the cells in a conditioned medium. Permanent cell lines are provided that can produce conditioned medium on a commercial scale. Methods have also been discovered to genetically alter pPS cells by introducing the cells with a viral vector or DNA/lipid complex. The system described in this disclosure allows for bulk proliferation of pPS cells for use in studying the biology of pPS cell differentiation, and the production of important products for use in human therapy.
摘要:
Methods and materials for culturing primate-derived primordial stem cells are described. In one embodiment, a cell culture medium for growing primate-derived primordial stem cells in a substantially undifferentiated state is provided which includes a low osmotic pressure, low endotoxin basic medium that is effective to support the growth of primate-derived primordial stem cells. The basic medium is combined with a nutrient serum effective to support the growth of primate-derived primordial stem cells and a substrate selected from the group consisting of feeder cells and an extracellular matrix component derived from feeder cells. The medium further includes non-essential amino acids, an anti-oxidant, and a first growth factor selected from the group consisting of nucleosides and a pyruvate salt.