摘要:
An interconnect structure which includes a plating seed layer that has enhanced conductive material, preferably, Cu, diffusion properties is provided that eliminates the need for utilizing separate diffusion and seed layers. Specifically, the present invention provides an oxygen/nitrogen transition region within a plating seed layer for interconnect metal diffusion enhancement. The plating seed layer may include Ru, Ir or alloys thereof, and the interconnect conductive material may include Cu, Al, AlCu, W, Ag, Au and the like. Preferably, the interconnect conductive material is Cu or AlCu. In more specific terms, the present invention provides a single seeding layer which includes an oxygen/nitrogen transition region sandwiched between top and bottom seed regions. The presence of the oxygen/nitrogen transition region within the plating seed layer dramatically enhances the diffusion barrier resistance of the plating seed.
摘要:
An interconnect structure that includes a dielectric material (52) having a dielectric constant of about 3.0 or less is provided. This low k dielectric material has at least one conductive material (60) having an upper surface embedded therein. The dielectric material also has a surface layer that is made hydrophobic (52B) prior to the formation of the noble metal cap (62). The noble metal cap is located directly on the upper surface of the at least one conductive material. Because of the presence of the hydrophobic surface layer on the dielectric material, the noble metal cap does not substantially extend onto the hydrophobic surface layer of the dielectric material that is adjacent to the at least one conductive material and no metal residues from the noble metal cap deposition form on this hydrophobic dielectric surface.
摘要:
A MEM switch is described having a free moving element (140) within in micro-cavity (40), and guided by at least one inductive element. The switch consists of an upper inductive coil (170); an optional lower inductive coil (190), each having a metallic core (180,200) preferably made of permalloy; a micro-cavity (40); and a free-moving switching element (140) also made of magnetic material. Switching is achieved by passing a current through the upper coil, inducing a magnetic field in the coil element. The magnetic field attracts the free-moving magnetic element upwards, shorting two open wires (M_I M_r) and thus, closing the switch. When the current flow stops or is reversed, the free-moving magnetic element drops back by gravity to the bottom of the micro-cavity and the wires open. When gravity cannot be used, a lower coil becomes necessary to pull the free-moving switching element back and holding it at its original position.
摘要:
FinFETs and fin isolation structures and methods of manufacturing the same are disclosed. The method includes patterning a bulk substrate to form a plurality of fin structures of a first dimension and of a second dimension. The method includes forming oxide material in spaces between the plurality of fin structures of the first dimension and the second dimension. The method includes forming a capping material over sidewalls of selected ones of the fin structures of the first dimension and the second dimension. The method includes recessing the oxide material to expose the bulk substrate on sidewalls below the capping material. The method includes performing an oxidation process to form silicon on insulation fin structures and bulk fin structures with gating. The method further includes forming a gate structure over the SOI fin structures and the bulk fin structures.
摘要:
An interconnect structure including a gouging feature at the bottom of one of the via openings and a method of forming the same are provided. In accordance with the present invention, the method of forming the interconnect structure does not disrupt the coverage of the deposited diffusion barrier in the overlying line opening, nor does it introduce damages caused by Ar sputtering into the dielectric material including the via and line openings. In accordance with the present invention, such an interconnect structure contains a diffusion barrier layer only within the via opening, but not in the overlying line opening. This feature enhances both mechanical strength and diffusion property around the via opening areas without decreasing volume fraction of conductor inside the line openings. In accordance with the present invention, such an interconnect structure is achieved by providing the gouging feature in the bottom of the via opening prior to formation of the line opening and deposition of the diffusion barrier in said line opening.
摘要:
An interconnect structure including a noble metal-containing cap that is present at least on some portion of an upper surface of at least one conductive material that is embedded within an interconnect dielectric material is provided. In one embodiment, the noble metal-containing cap is discontinuous, e.g., exists as nuclei or islands on the surface of the at least one conductive material. In another embodiment, the noble metal-containing cap has a non-uniform thickness across the surface of the at least one conductive material.
摘要:
A semiconductor structure including a highly reliable high aspect ratio contact structure in which key-hole seam formation is eliminated is provided. The key-hole seam formation is eliminated in the present invention by providing a densified noble metal-containing liner within a high aspect ratio contact opening that is present in a dielectric material. The densified noble metal-containing liner is located atop a diffusion barrier and both those elements separate the conductive material of the inventive contact structure from a conductive material of an underlying semiconductor structure. The densified noble metal-containing liner of the present invention is formed by deposition of a noble metal-containing material having a first resistivity and subjecting the deposited noble metal-containing material to a densification treatment process (either thermal or plasma) that decreases the resistivity of the deposited noble metal-containing material to a lower resistivity.
摘要:
A magnetic random access memory (MRAM) device includes a magnetic tunnel junction (MTJ) stack formed over a lower wiring level, a hardmask formed on the MTJ stack, and an upper wiring level formed over the hardmask. The upper wiring level includes a slot via bitline formed therein, the slot via bitline in contact with the hardmask and in contact with an etch stop layer partially surrounding sidewalls of the hardmask.
摘要:
A damascene wire and method of forming the wire. The method including: forming a mask layer on a top surface of a dielectric layer; forming an opening in the mask layer; forming a trench in the dielectric layer where the dielectric layer is not protected by the mask layer; recessing the sidewalls of the trench under the mask layer; forming a conformal conductive liner on all exposed surface of the trench and the mask layer; filling the trench with a core electrical conductor; removing portions of the conductive liner extending above the top surface of the dielectric layer and removing the mask layer; and forming a conductive cap on a top surface of the core conductor. The structure includes a core conductor clad in a conductive liner and a conductive capping layer in contact with the top surface of the core conductor that is not covered by the conductive liner.