摘要:
A semiconductor device includes: a crystalline substrate including a primary surface and a crystal plane provided within the primary surface so as to have a surface orientation different from a surface orientation of the primary surface; a semiconductor layered structure grown over the crystalline substrate; and an active region provided at a portion in the semiconductor layer structure above the crystal plane.
摘要:
A mask film of a material on which substantially no nitride semiconductor grows and having a plurality of openings in a stripe shape is formed on a main surface of a base substrate. Then, on the base substrate, a semiconductor layer of nitride is selectively grown through the mask film. Then, a laser beam is irradiated upon the interface between the semiconductor layer and the base substrate to separate the semiconductor layer from the base substrate, so that a nitride semiconductor substrate is formed from the semiconductor layer.
摘要:
A semiconductor substrate comprises a semiconductor layer comprising a group III nitride as a main component. A scattering portion for scattering an incident beam of light incident on one plane of the semiconductor layer is provided on another plane or inside of the semiconductor layer.
摘要:
To provide a semiconductor laser device that is capable of outputting high power laser light and is suitable for optical recording, optical communication, welding, and the like, and a multiple wavelength laser light emitting apparatus employing the semiconductor laser device. The semiconductor laser device includes an optical element that at least partially reflects a laser beam emitted from an end face of a laser light oscillator in a semiconductor laser array element so that the laser beam is incident on another laser light oscillator. Due to this, even when laser light oscillators are disposed with such a pitch that does not pose problems in manufacturing, a laser beam emitted from an end face of one laser light oscillator and a laser beam emitted from an end face of another laser light oscillator are phase-locked. By condensing these laser beams, the semiconductor laser device can output higher power laser light than conventional.
摘要:
A semiconductor substrate comprises a semiconductor layer comprising a group III nitride as a main component. A scattering portion for scattering an incident beam of light incident on one plane of the semiconductor layer is provided on another plane or inside of the semiconductor layer.
摘要:
A method for producing a semiconductor device of the present invention includes: heating a first semiconductor layer 12 made of a Group III nitride-based compound semiconductor in gas containing nitrogen atoms; and growing a second semiconductor layer 13 made of a Group III nitride-based compound semiconductor on the first semiconductor layer 12.
摘要:
A semiconductor laser device comprises, on top of an active layer, an n-type cladding layer of Al x1 Ga 1-x1 As and a p-type cladding layer of (Al x Ga 1-x ) y In 1-y P for defining a barrier height. The p-type cladding layer for defining a barrier height contains more component elements than the n-type cladding layer. The potential difference between the conduction band edges of the p-type cladding layer for defining a barrier height and the active layer is greater than the potential difference between the conduction band edges of the n-type cladding layer and the active layer. The carriers in the active layer are prevented from overflowing into the p-type cladding layer and a material having a high thermal conductivity is used for the n-type cladding layer to prevent the phenomenon of thermal saturation, thereby providing improved optical output.
摘要:
A first semiconductor layer is formed on a mother substrate, and the mother substrate is irradiated with irradiation light from a surface opposite to the first semiconductor layer, so that a thermally decomposed layer formed by thermally decomposing the first semiconductor layer between the first semiconductor layer and the mother substrate. Then, a second semiconductor layer including an active layer is formed on the first semiconductor layer in which the thermally decomposed layer is formed.
摘要:
An optical-pick up preventing the deterioration of the optical property by mounting the entire optical system on the movable portion and aligning the optical axis of the semiconductor laser element having the shortest wavelength with the center of the optical axis of the objective lens and an information recording and reproducing apparatus on which the optical pick-up is mounted. The optical pick-up includes a movable portion 6 on which at least a plurality of semiconductor laser elements 2 irradiating an optical recording medium 12 with laser beams and an objective lens 1 converging laser beams emerged from the semiconductor laser element are mounted, a fixed portion 7 supporting the movable portion 6, and a supporting component 8 connecting the movable portion 6 to the fixed portion 7 so that the movable portion 6 is rockable in a focus direction and a tracking direction of the optical recording medium 12; wherein at least two of the plurality of semiconductor laser elements 2 have a different lasing wavelength from each other and an optical axis of the semiconductor laser element having the shortest wavelength is aligned with the center of the optical axis of the objective lens 1. Thereby, it is possible to prevent the optical displacement in the optical system when the position of the objective lens is changed.
摘要:
A sapphire substrate, a buffer layer of undoped GaN and a compound semiconductor crystal layer successively formed on the sapphire substrate together form a substrate of a light emitting diode. A first cladding layer of n-type GaN, an active layer of undoped In 0.2 Ga 0.8 N and a second cladding layer successively formed on the compound semiconductor crystal layer together form a device structure of the light emitting diode. On the second cladding layer, a p-type electrode is formed, and on the first cladding layer, an n-type electrode is formed. In a part of the sapphire substrate opposing the p-type electrode, a recess having a trapezoidal section is formed, so that the thickness of an upper portion of the sapphire substrate above the recess can be substantially equal to or smaller than the thickness of the compound semiconductor crystal layer.