Abstract:
A method for protecting a material of a microstructure comprising said material and a noble metal layer (8) against undesired galvanic etching during manufacture comprises forming on the structure a sacrificial metal layer (12) having a lower redox potential than said material, the sacrificial metal layer (12) being electrically connected to said noble metal layer (8).
Abstract:
The present invention relates to a process for forming microstructures on a substrate. A plating surface is applied to a substrate. A first layer of photoresist is applied on top of the plating base. The first layer of photoresist is exposed to radiation in a pattern to render the first layer of photoresist dissolvable in a first pattern. The dissolvable photoresist is removed and a first layer of primary metal is electroplated in the area where the first layer of photoresist was removed. The remainder of the photoresist is then removed and a second layer of photoresist is then applied over the plating base and first layer of primary metal. The second layer of photoresist is then exposed to a second pattern of radiation to render the photoresist dissolvable and the dissolvable photoresist is removed. The second pattern is an area that surrounds the primary structure, but it does not entail the entire substrate. Rather it is an island surrounding the primary metal. The exposed surface of the secondary metal is then machined down to a desired height of the primary metal. The secondary metal is then etched away.
Abstract:
According to one embodiment, a movable MEMS component suspended over a substrate is provided. The component can include a structural layer having a movable electrode separated from a substrate by a gap. The component can also include at least one standoff bump attached to the structural layer and extending into the gap for preventing contact of the movable electrode with conductive material when the component moves. The structural layer is folded.
Abstract:
Trilayered Beam MEMS Device and Related Methods. According to one embodiment, a method for fabricating a trilayered beam is provided. The method can include depositing a sacrificial layer on a substrate and depositing a first conductive layer on the sacrificial layer. The method can also include forming a first conductive microstructure by removing a portion of the first conductive layer. Furthermore, the method can include depositing a structural layer on the first conductive microstructure, the sacrificial layer, and the substrate and forming a via through the structural layer to the first conductive microstructure. Still furthermore, the method can include the following: depositing a second conductive layer on the structural layer and in the via; forming a second conductive microstructure by removing a portion of the second conductive layer, wherein the second conductive microstructure electrically communicates with the first conductive microstructure through the via; and removing a sufficient amount of the sacrificial layer so as to separate the first conductive microstructure from the substrate, wherein the structural layer is supported by the substrate at a first end and is freely suspended above the substrate at an opposing second end.
Abstract:
According to one embodiment, a movable MEMS component (100) suspended over a substrate (102) is provided. The component (100) can include a structural layer (112) having a movable electrode (114) separated from a substrate (102) by a gap. The component (100) can also include at least one standoff bump (118) attached to the structural layer (112) and extending into the gap for preventing contact of the movable electrode (114) with conductive material when the component moves.