摘要:
Coated substrates and methods of producing the same are provided. In an exemplary embodiment, a method of coating a substrate includes brazing a first bond coat layer to the substrate, where the substrate includes a ceramic material. A second bond coat layer is plasma sprayed overlying the first bond coat layer to form a composite bond coat with the first bond coat layer positioned between the second bond coat layer and the substrate. An environmental barrier coating layer is applied overlying the second bond coat layer such that the first and second bond coat layers are positioned between the substrate and the environmental barrier coating layer.
摘要:
The invention relates to a method for applying a coating to a surface to be coated, wherein the surface to be coated is primed, an adhesive is applied to the primed surface, a glass mat is placed in the adhesive, the glass mat and the adhesive are dried, the dried glass mat is smoothed with a putty, the putty is ground smooth, a primer is applied to the ground putty, and the primer is painted over with a final paint coat. Said method is particularly suited for applying a wall coating or a ceiling coating in rooms having high requirements for hygiene.
摘要:
A multilayer brazeable metallization structure for diamond components and method for producing it are described. The brazeable metallization finds particular application for the attachment of diamond components such as heat spreaders in electronic packages that incorporate high power semiconductor devices. In the present invention, a diamond component is provided with a multilayer coating of metals including a first layer of chromium for adhesion, a second barrier layer of a refractory metal for a barrier that may be alloyed with chromium, and a top layer of copper, silver or gold for wetting. This top layer is thick (greater than 5 microns), without sacrificing resistance to delamination, particularly at brazing conditions. The refractory metals for the second layer include tungsten, molybdenum, tantalum and niobium, or tungsten-chromium alloy. This multilayer metallization structure provides a robust interface between diamond and standard brazing alloys which are used to join the diamond to electrical leads or a flange made of metals such as copper-tungsten. The interfacial adhesion between the metallization and the diamond is sufficient to withstand exposure to brazing at temperatures less than or equal to 1,100 °C in inert gas atmospheres that may contain hydrogen.
摘要:
A method of protecting during the start-up procedure a cathode (1) of a cell for the electrowinning of aluminium where the cathode (1) is optionally coated with an aluminium-wettable refractory material (2) and on which cathode, in use, aluminium is produced. The start-up procedure comprises applying before preheating the cell one or more start-up layers (3) on the aluminium-wettable refractory coating (2). The start-up layer(s) form(s) a temporary protection (3) against damage of chemical and/or mechanical origin to the aluminium-wettable coating (2), this temporary protection (3) being in intimate contact with the aluminium-wettable coating (2) and being eliminated before or during the initial normal operation of the cell. The layers of the temporary protection (3) may be obtained inter alia from at least one pliable foil of aluminium having a thickness of less than 0.1 mm, an applied metallization, a boron-containing solution, a polymer, a phosphate of aluminium-containing solution, or a colloid that gels while preheating the cell, or combinations thereof.
摘要:
A method of treating a transmissive body of zinc sulfide or zinc selenide includes placing a non-platinum metal layer, such as a layer of cobalt, silver, or iron on a surface of the transmissive body, and improving the optical properties of the transmissive body by subjecting the body and the layer to an elevated temperature and elevated pressure. The zinc sulfide or zinc selenide may be chemical vapor deposited material. The non-platinum metal of the layer may be such that a Gibbs free energy of formation of a most stable sulfide (or selenide) of the non-platinum metal is more negative than a Gibbs free energy of formation of a most stable zinc sulfide (or zinc selenide) configuration that is thermodynamically capable of reacting with the non-platinum metal. With this condition the non-platinum metal preferentially chemically bonds with free sulfur (or free selenium) in preference to zinc sulfide (or zinc selenium).
摘要:
A method of treating a transmissive body of zinc sulfide or zinc selenide includes placing a non-platinum metal layer, such as a layer of cobalt, silver, or iron on a surface of the transmissive body, and improving the optical properties of the transmissive body by subjecting the body and the layer to an elevated temperature and elevated pressure. The zinc sulfide or zinc selenide may be chemical vapor deposited material. The non-platinum metal of the layer may be such that a Gibbs free energy of formation of a most stable sulfide (or selenide) of the non-platinum metal is more negative than a Gibbs free energy of formation of a most stable zinc sulfide (or zinc selenide) configuration that is thermodynamically capable of reacting with the non-platinum metal. With this condition the non-platinum metal preferentially chemically bonds with free sulfur (or free selenium) in preference to zinc sulfide (or zinc selenium).