Abstract:
A rear drive module for an all-wheel drive motor vehicle includes a differential assembly having an outer differential housing and an inner differential housing, the inner differential housing being fixed for rotation with an output shaft of the differential assembly; a ring gear assembly having a ring gear mounted to and fixed for rotation with the outer differential housing; and a disconnect and synch-lock mechanism: operable to synchronize and lock the inner differential housing and the outer differential housing, and to disconnect the inner differential housing and the outer differential housing to prevent rotation of the outer differential housing and the ring gear. The disconnect and synch-lock mechanism may include a synchronizer clutch and a clutch actuator. The clutch actuator may be a ball-ramp or face cam mechanism which is configured to control the operation of the synchronizer clutch and locking between the inner and outer differential housings.
Abstract:
Incongruity sense of a driver due to dog clunking noise can be reduced with reduction of dog clunking noise. A fifth-speed driving gear (425) and a sixth-speed driving gear (426) are arranged on a driving shaft (41) along an axial direction. A first slider (451) is disposed to be movable in the axial direction between the fifth-speed driving gear (425) and the sixth-speed driving gear (426). The first slider (451) is not rotatable on the driving shaft (41). In the axial direction, the sum of the widths of the fifth-speed driving gear (425) and the sixth-speed driving gear (426) is smaller than the maximum width of the first slider (451).
Abstract:
A transmission 20 includes gears 421 through 426 and 441 through 446, sliders 451 through 453, an electric motor 58, a shift drum 50, shift forks 491 through 493, and a control unit 83. The sliders 451 through 453 are members different from the gears 421 through 426 and 441 through 446. The shift drum 50 includes guide grooves 61 through 63 each including a linear portion 64 and a tilt portion 65. An end of each of the shift forks 491 through 493 is located in a corresponding one of the guide grooves 61 through 63. The control unit 83 controls the electric motor 58 to rotate the shift drum 50 in such a manner that a gear-shift rotation angle is less than 60 degrees. With rotation of the shift drum 50 by the gear-shift rotation angle, the shift forks 491 through 493 move the sliders 451 through 453 in the axial direction of the shaft 21 or 22. In this manner, dog portions of the sliders 451 through 453 mesh with dog portions of the gears 441 through 446 so that rotation of the shaft 21 is transferred to the shaft 22.
Abstract:
A clutch mechanism for coupling and uncoupling an electric motor and leadscrew has dog-clutch gears that can be engaged by a linear actuator, bell crank, and linkage shaft. Uncoupling force due to narrowed dog teeth are resisted by the alignment of the linkage shaft with the central portion of the bell crank.
Abstract:
The present invention discloses a power transmission apparatus. The power transmission apparatus includes: an input shaft including a male screw portion formed thereon; a pair of input gears formed on the input shaft to be freely rotatable with the male screw portion being interposed therebetween; an output gear formed to be rotatable in a state of being linked with the pair of input gears; and a power interrupting unit screw-coupled to the male screw portion of the input shaft, and configured to rectilinearly reciprocate along the input shaft by a rotation of the input shaft to be selectively engaged with any one of the pair of input gears so as to transmit a power.
Abstract:
The invention relates to a torque and speed converter for actuating a cylinder, in particular for actuating a clutch of a motor vehicle, comprising an actuating disk, which can be rotated about an axis of rotation in and against a direction of rotation, and a tappet, which can be displaced in and against a displacement direction, wherein the actuating disk is provided for displacing the tappet, wherein an actuating element is arranged between the actuating disk and the tappet, which actuating element is supported in such a way that the actuating element can be pivoted about a pivot axis in and against a pivoting direction. The invention further relates to an actuating assembly, comprising such a torque and speed converter and an adjusting drive for automatically driving the torque and speed converter. The invention further relates to a clutch, in particular of a motor vehicle, comprising such a torque and speed converter.
Abstract:
A ball ramp actuator assembly including a control ring, an activation ring including a first section and a second section, two circumferential plate grooves formed between the control ring and the sections of the activation ring which contain rolling elements, two clutches, a gear and an actuator. The first and second sections are splined together allowing for axial movement. The first clutch is connected to the first section of the activation ring and a second clutch is connected to the second section of the activation ring. The rotation of a section of the activation ring axially in one direction allows the corresponding plate groove to expand and apply a load to the corresponding clutch while the other section of the activation ring remains inactive and rotation in the opposite direction activates the other clutch respectively.
Abstract:
A transmission device for interruptibly transmitting torque between a first rotary member and a second rotary member respectively rotatable about an axis is comprised of a clutch disconnectably and drivingly coupling the first rotary member with the second rotary member; a motor including a rotor rotatable about the axis; an input member coupled with the rotor and rotatable about the axis, the input member including an eccentric shaft eccentric relative to the axis; a fixed member immovable about the axis; an intermediate member fitting with the eccentric shaft to make an eccentric motion and meshing with the fixed member to make a rotary motion about the eccentric shaft; an output member rotatable about the axis and fitting with and following the intermediate member; and a cam mechanism intervening between the output member and the clutch to convert a rotary motion of the output member into a motion in a direction along the axis to press the clutch.
Abstract:
A rotation transmission device is provided in which an electromagnetic clutch selectively engages and disengages a two-way clutch configured to selectively perform and stop the transmission of torque between an input shaft and an output shaft. A spring holder (50) fitted on the input shaft (1) prevents rollers (15) from axially moving. Spring holding pieces (52) mounted to the spring holder (50) are formed with respective engagement surface (53) engaging with cam surfaces (14) of the outer periphery of an inner ring such that the spring holder (50) is rotationally fixed. Since it is not necessary to machine the input shaft (1) just for the purpose of rotationally fixing the spring holder (50), it is possible to reduce costs.