摘要:
The present disclosure relates to semiconductor structures and, more particularly, to a substrate with trap rich and low resistivity regions and methods of manufacture. The structure includes: a high resistivity semiconductor substrate; an active device over the high resistivity semiconductor substrate; and a low resistivity region floating in the high resistivity semiconductor substrate and which is below the active device.
摘要:
Provided is a composite substrate having a semiconductor layer wherein diffusion of a metal is suppressed. This composite substrate has: a single crystal supporting substrate composed of an insulating oxide; a semiconductor layer, which has one main surface overlapping the supporting substrate, and which is composed of a single crystal; and a polycrystalline or amorphous intermediate layer, which is positioned between the supporting substrate and the semiconductor layer, and which has, as a main component, an element constituting the supporting substrate or an element constituting the semiconductor layer, and in which the ratio of accessory components other than the main component is less than 1 mass %.
摘要:
Carbon allotropes, a thin-film transistor array substrate comprising the same, and a display device comprising the same are disclosed. The thin-film transistor array substrate comprising a substrate, a gate electrode on the substrate, a gate insulating film on the gate electrode, an active layer positioned on the gate insulating film and comprising a semiconductor material and a plurality of carbon allotropes, and a source electrode and a drain electrode that make contact with the active layer.
摘要:
A method of fabricating MOTFTs includes positioning opaque gate metal on a transparent substrate, depositing gate dielectric material overlying the gate metal and a surrounding area, and depositing metal oxide semiconductor material thereon. Etch stop material is deposited on the semiconductor material. Photoresist defines an isolation area in the semiconductor material. Exposing the photoresist from the rear surface of the substrate and removing exposed portions to leave the etch stop material uncovered except for a portion overlying and aligned with the gate metal. Etching uncovered portions of the semiconductor material to isolate the TFT. Using the photoresist, selectively etching the etch stop layer to leave a portion overlying and aligned with the gate metal and defining a channel area in the semiconductor material. Depositing and patterning conductive material to form source and drain areas.
摘要:
A display may have an array of organic light-emitting diode display pixels. Each display pixel may have a light-emitting diode that emits light under control of a drive transistor. Each display pixel may also have control transistors for compensating and programming operations. The array of display pixels may have rows and columns. Row lines may be used to apply row control signals to rows of the display pixels. Column lines (data lines) may be used to apply display data and other signals to respective columns of display pixels. A bottom conductive shielding structure may be formed below each drive transistor. The bottom conductive shielding structure may serve to shield the drive transistor from any electric field generated from the adjacent row and column lines. The bottom conductive shielding structure may be electrically floating or coupled to a power supply line.
摘要:
An array substrate, a display device and a method of producing the array substrate are provided, and the array substrate comprises a substrate (101) and a thin film field effect transistor and a data line (107) formed on the substrate (101), and the thin film field effect transistor comprises a gate electrode (102), an active layer (105), a source electrode (1082) and a drain electrode (1081), a gate insulating layer (104) is formed between the gate electrode (102) and the active layer (105), and the array substrate comprises: a protection layer (112) formed between the gate insulating layer (104) and the data line (107) and being in direct contact with the data line (107); and the protection layer (112) is provided on the same layer with and has the same material with the active layer (105).
摘要:
A display may have an array of organic light-emitting diode display pixels. Each display pixel may have a light-emitting diode that emits light under control of a drive transistor. Each display pixel may also have control transistors for compensating and programming operations. The array of display pixels may have rows and columns. Row lines may be used to apply row control signals to rows of the display pixels. Column lines (data lines) may be used to apply display data and other signals to respective columns of display pixels. A bottom conductive shielding structure may be formed below each drive transistor. The bottom conductive shielding structure may serve to shield the drive transistor from any electric field generated from the adjacent row and column lines. The bottom conductive shielding structure may be electrically floating or coupled to a power supply line.
摘要:
A thin film transistor substrate includes a gate electrode disposed on a base substrate, an active pattern overlapping the gate electrode, a source metal pattern comprising both a source electrode disposed on the active pattern and a drain electrode spaced apart from the source electrode, a buffer layer disposed on the source metal pattern and contacting the active pattern, a first passivation layer disposed on the buffer layer and a second passivation layer disposed on the first passivation layer. The density of hydrogen in the buffer layer is greater than the density of hydrogen in the first passivation layer and less than the density of hydrogen in the second passivation layer.
摘要:
The present invention discloses a thin-film transistor (TFT), a manufacturing method thereof, an array substrate and a display device. The present invention is used for improving the electrical properties of the TFT and the image quality of the display device. The TFT provided by the present invention comprises: a gate electrode, a source electrode, a drain electrode, a semiconductor layer, a gate electrode insulating layer and a first metal barrier layer, which are disposed on a substrate; the gate electrode insulating layer is disposed between the gate electrode and the semiconductor layer; and the first metal barrier layer is disposed between the source/drain electrodes and the gate electrode insulating layer, and the first metal barrier layer is arranged on the same layer as the semiconductor layer and configured to prevent interdiffusion between the material for forming the source/drain electrodes and the material for forming the gate electrode.
摘要:
One object is to have stable electrical characteristics and high reliability and to manufacture a semiconductor device including a semi-conductive oxide film. Film formation is performed by a sputtering method using a target in which gallium oxide is added to a material that is easy to volatilize compared to gallium when the material is heated at 400 °C to 700 °C like zinc, and a formed film is heated at 400 °C to 700 °C, whereby the added material is segregated in the vicinity of a surface of the film and the oxide is crystallized. Further, a semi-conductive oxide film is deposited thereover, whereby a semi-conductive oxide having a crystal which succeeds a crystal structure of the oxide that is crystallized by heat treatment is formed.