摘要:
There are disclosed various methods and apparatuses. In some embodiments of the method an input signal is provided to an input of a first transistor of a push-pull circuit via a first slew-rate adjuster; and the input signal is also provided to an input of a second transistor of the push-pull circuit via a second slew-rate adjuster. The input signal is effected by the first slew-rate adjuster and the second slew-rate adjuster to switch the first transistor on after the second transistor switches off when the amplitude of the input signal increases. The input signal is effected by the first slew-rate adjuster and the second slew-rate adjuster the input signal to switch the second transistor on after the first transistor switches off when the amplitude of the input signal decreases. In some embodiments the apparatus comprises a push-pull circuit comprising a first transistor and a second transistor; an input to receive an input signal; a first slew-rate adjuster adapted to provide the input signal to the input of the first transistor; and a second slew-rate adjuster adapted to provide the input signal to the input of the second transistor. A time constant of the first slew-rate adjuster is dependent on the direction of change of the input signal, and a time constant of the second slew-rate adjuster is dependent on the direction of change of the input signal.
摘要:
An amplifier arrangement comprising first and second power amplifiers (T1, T2) having drains connected to positive and negative drive voltages, respectively, and gates connected to an input signal. The arrangement further comprises first and second current sensors (1, 2) for detecting first and second drain currents from the power amplifiers, processing circuitry (3) adapted to identify the smallest drain current, and a feedback control loop (5) and means for driving a bias current dependent on a feedback signal through a resistor connected between the input signal and the gate of an inactive one of the first and second power amplifiers. The control loop will keep the idle current constant in the transistor with the lowest current (the inactive transistor). Thereby, the current running in the transistor which does not deliver current to the load will be fixed at a desired value.
摘要:
A monolithic integrated circuit amplifier has a gain stage (202) and a buffer stage (210). The buffer stage includes an output stage and two separate voltage supplies (+Vlo, +Vhi), the second of which has a greater magnitude than the first. Switching circuitry is included that is connected to the output stage via a regulator bus. When an output demand voltage is less than a switch-over threshold, current to the output stage is provided substantially from the first voltage supply (+Vlo); when the output demand voltage is greater than the awitch-over threshold, current to the output stage is provided substantially from the second voltage supply (+Vhi). Collector voltage at the output stage is dynamically controlled to be greater than the emitter voltage by a difference voltage that increases proportionally as output voltage increases above the switch-over threshold. This difference voltage is commonly reffered to as 'headroom'. The dynamic headroom control circuitry preferably includes circuitry for predicably setting and controlling the headroom voltage at switch-over and smoothly increasing the headroom voltage up to maximum output voltage.
摘要:
There are disclosed various methods and apparatuses. In some embodiments of the method an input signal is provided to an input of a first transistor of a push-pull circuit via a first slew-rate adjuster; and the input signal is also provided to an input of a second transistor of the push-pull circuit via a second slew-rate adjuster. The input signal is effected by the first slew-rate adjuster and the second slew-rate adjuster to switch the first transistor on after the second transistor switches off when the amplitude of the input signal increases. The input signal is effected by the first slew-rate adjuster and the second slew-rate adjuster the input signal to switch the second transistor on after the first transistor switches off when the amplitude of the input signal decreases. In some embodiments the apparatus comprises a push-pull circuit comprising a first transistor and a second transistor; an input to receive an input signal; a first slew-rate adjuster adapted to provide the input signal to the input of the first transistor; and a second slew-rate adjuster adapted to provide the input signal to the input of the second transistor. A time constant of the first slew-rate adjuster is dependent on the direction of change of the input signal, and a time constant of the second slew-rate adjuster is dependent on the direction of change of the input signal.
摘要:
A current-voltage conversion circuit comprises: a first transistor provided in an input stage; a second transistor provided in the input stage and has polarity different from that of the first transistor; and a bias circuit. A first terminal of the first transistor and a first terminal of the second transistor are connected to an input terminal into which an input current is input, a second terminal of the first transistor is connected to a first predetermined potential, a second terminal of the second transistor is connected to a second predetermined potential, the bias circuit is connected between the control terminal of the first transistor and the control terminal of the second transistor.
摘要:
A current-voltage conversion circuit comprises: a first transistor provided in an input stage; a second transistor provided in the input stage and has polarity different from that of the first transistor; and a bias circuit. A first terminal of the first transistor and a first terminal of the second transistor are connected to an input terminal into which an input current is input, a second terminal of the first transistor is connected to a first predetermined potential, a second terminal of the second transistor is connected to a second predetermined potential, the bias circuit is connected between the control terminal of the first transistor and the control terminal of the second transistor.
摘要:
Provided are a transfer gate circuit that has reduced disturbance in an output waveform thereof, a power combining circuit using the transfer gate circuit, and a transmission device and a communication device that use the power combining circuit. The transfer gate circuit includes: output terminals (3, 4) ; a transistor (5) including a drain connected to the output terminal (3); a transistor (6) including a drain connected to the output terminal (4); transistors (7, 8) each including a drain connected to the output terminal (3) and each including a source connected to a ground potential; and transistors (9, 10) each including a drain connected to the output terminal (4) and each including a source connected to the ground potential. In the transfer gate circuit, the transistors (5, 6) include sources to which first and second input signals are input, respectively, the transistor (5) includes a gate to which a signal in phase with the second input signal is input, the transistor (6) includes a gate to which a signal in phase with the first input signal is input, the transistors (7, 9) each include a gate to which a signal in antiphase to the second input signal is input, and the transistors (8, 10) each include a gate to which a signal in antiphase to the first input signal is input.
摘要:
A monolithic integrated circuit amplifier has a gain stage (202) and a buffer stage (210). The buffer stage includes an output stage and two separate voltage supplies (+Vlo, +Vhi), the second of which has a greater magnitude than the first. Switching circuitry is included that is connected to the output stage via a regulator bus. When an output demand voltage is less than a switch-over threshold, current to the output stage is provided substantially from the first voltage supply (+Vlo); when the output demand voltage is greater than the awitch-over threshold, current to the output stage is provided substantially from the second voltage supply (+Vhi). Collector voltage at the output stage is dynamically controlled to be greater than the emitter voltage by a difference voltage that increases proportionally as output voltage increases above the switch-over threshold. This difference voltage is commonly reffered to as 'headroom'. The dynamic headroom control circuitry preferably includes circuitry for predicably setting and controlling the headroom voltage at switch-over and smoothly increasing the headroom voltage up to maximum output voltage.
摘要:
The invention relates to a switching circuit (52) for a cavity radio-frequency combiner, said switching circuit (52) being intended to connect an amplifier to the cavity combiner and said circuit (52) being adapted for average-power radio waves.