Abstract:
각각이 4F 2 의 셀 크기를 갖는 복수의 사이리스터-기반의 메모리 셀들을 포함하는 반도체 장치들, 및 이를 형성하는 방법들이 제공된다. 사이리스터-기반의 메모리 셀들 각각은 교대로 나타나는 도펀트 유형들의 수직으로 중첩된 영역들을 갖는 사이리스터 및, 제어 게이트를 포함한다. 제어 게이트는 사이리스터들 중 하나 이상에 전기적으로 결합될 수 있고 전압원에 동작가능하게 결합될 수 있다. 사이리스터-기반의 메모리 셀들은 캐소드 또는 데이터 라인으로서 기능할 수 있는 도전성 스트랩 상에 어레이로 형성될 수 있다. 시스템은 하나 이상의 메모리 액세스 장치들 혹은 상보 금속-산화물-반도체(CMOS) 장치와 같은 통상의 논리장치들과 함께 반도체 장치들을 집적함으로써 형성될 수 있다.
Abstract:
본 발명은 반도체 장치 및 이의 제조 방법을 제공한다. 본 발명에서는, 콘택홀을 형성할 때 발생되는 콘택 잔여물이 몰드막이 아닌 보호막과 접한다. 상기 보호막은 상기 콘택 잔여물과 상기 몰드막 사이의 반응을 방지한다. 이로써 하부전극들 간의 누설전류를 방지할 수 있다.
Abstract:
The present invention relates to a semiconductor device and a method for forming the same. The semiconductor device according to one embodiment of the present invention includes a substrate; a gate structure on the substrate; and an insulating feature part in the substrate. According to one embodiment of the present invention, the insulating feature part includes an insulating layer having a first thickness; and a capping layer having a second thickness on the insulating layer.
Abstract:
A FinFET device is manufactured by firstly receiving a FinFET precursor. The FinFET precursor comprises: a substrate, a pin on the substrate, a separation area next to the pin, and a dummy gate stack on the substrate which surrounds a part of the pin called by a gate channel area. The dummy gate stack is removed to form a gate trench. A gate dielectric layer is deposited on the gate trench. A metal stressor layer (MSL) is deposited on the gate dielectric layer. A capping layer is deposited on the MSL. Heat treatment is applied to the MSL to expand volume. The capping layer is removed and a metal gate (MG) is formed on the MSL.
Abstract:
카본층을 제조하는 방법 및 시스템이 제공된다. 실시형태는 카본을 포함하는 기판 상에 제1 메탈층을 증착하는 스텝을 포함한다. 실리사이드는 기판 상에 에피택셜 성장되고, 또한 에피택셜 성장된 실리사이드는 실리사이드 상에 카본의 층을 형성한다. 실시형태에서 카본층은 그래핀(graphene)이고, 그래핀 내에 채널을 형성하기 위한 추가의 프로세싱을 위해 반도체 기판으로 이동될 수 있다.
Abstract:
[OBJETIVE] a film forming method capable of generating an AlON layer which is uniformly dispersed in the thickness direction of nitrogen even though the thickness of a layer is thick. [SOLUTION] after forming an AlN layer (23) on the SiC substrate (17) of a wafer (W), an AlON layer (25) which has a stack structure where an AlO layer (24) and an AlN layer (23) are alternately stacked by repeatedly forming the AlN layer (23) on the film-formed AlO layer (24) and the film forming layer of the AlO layer (24) is formed and then the AlON layer (25) having the stack structure is heat-treated.
Abstract:
The present invention relates to a method of forming a low resistance wire, capable of increasing an aperture ratio by increasing a thickness of a wire using low resistance material, and improving image quality by preventing a step coverage problem and a flicker phenomenon caused by increase of the thickness of the wire and a method of manufacturing a thin film transistor using the same.The method of forming a low resistance wire according to the present invention includes: depositing an organic insulation layer on a base layer; forming a groove or an opening in the organic insulation layer by removing a part of the organic insulation layer; forming a seed layer in the groove or the opening of the organic insulation layer; and forming a wire including the seed layer and a plating layer by plating a plating material on the seed layer formed in the groove of the organic insulation layer.
Abstract:
The technology provides a semiconductor device capable of independently adjusting a threshold voltage of an NMOS transistor and a threshold voltage of a PMOS transistor, and a method of fabricating the same. The method of fabricating a semiconductor device according to the technology includes: forming a gate insulation layer on an entire surface of a semiconductor substrate including an NMOS region and a PMOS region; forming a tungsten containing carbon on a gate insulation layer of the NMOS region; forming a tungsten nitride containing the carbon on the gate insulation layer of the PMOS region; forming a tungsten layer on the tungsten containing the carbon and the tungsten nitride containing the carbon; performing a post heat treatment for the semiconductor substrate on which the tungsten layer is formed; and forming a first gate electrode and a second gate electrode on the NMOS region and a PMOS region by etching the tungsten layer, the tungsten containing the carbon, and the tungsten nitride containing the carbon, respectively.The technology may form a dual metal gate electrode having a work function suitable for each transistor and a low resistance as a gate electrode of the NMOS transistor and the PMOS transistor by using a tungsten-containing layer that contains a material for adjusting a work function.
Abstract:
The present invention relates to a system and a method of manufacturing a carbon layer. The embodiment includes a step of depositing a first metal layer on a substrate having a carbon layer. A silicide is epitaxial-grown on a substrate. An epitaxial-grown silicide is to form a carbon layer on a silicide layer. In the embodiment, the carbon layer is made of graphene. A semiconductor substrate can be moved to perform an additional process for forming a channel in the graphene.