摘要:
Various approaches for operating an ultrasound transducer having multiple transducer elements include acquiring one or more measurements of anatomical regions through which ultrasound waves emitted from the transducer elements travel; for each of the anatomical regions, determining values of characteristics based at least in part on the measurement(s); computationally predicting aberrations of the ultrasound waves traveling through the anatomical regions by using the first values as input to a predictor that has been computationally trained to predict ultrasound aberrations based on values of the characteristics; and driving the transducer elements to compensate for the predicted aberrations.
摘要:
A system for maintaining coherence of ultrasound waves emitted by multiple transducer arrays includes multiple retention arms, each for receiving one of the transducer arrays; a connecting frame for receiving and mechanically retaining the arms in fixed angular relation to each other; and a processor configured to determine relative locations of the transducer arrays with respect to one another and the connecting frame; determine a location of the connecting frame relative to an anatomic region of interest; determine a spatial arrangement of the transducer elements in each transducer array with respect to the anatomic region of interest; and adjust a transmission configuration of the transducer elements in the transducer arrays to achieve a desired focusing property with respect to the anatomic region of interest while maintaining coherence therebetween.
摘要:
Various approaches to focusing an ultrasound transducer includes causing the ultrasound transducer to transmit ultrasound waves to the target region; causing the detection system to indirectly measure the focusing properties; and based at least in part on the indirectly measured focusing properties, adjusting a parameter value associated with at least one of the transducer elements so as to achieve a target treatment power at the target region.
摘要:
Various approaches for calibrating the geometry of an ultrasound transducer having multiple transducer elements include providing an acoustic reflector spanning an area traversing by multiple beam paths of ultrasound waves transmitted from all (or at least some) transducer elements to a focal zone; causing the transducer elements to transmit the ultrasound waves to the focal zone; measuring reflections of the ultrasound waves off the acoustic reflector; and based at least in part on the measured reflections, determining optimal geometric parameters associated with the transducer elements.
摘要:
Various approaches for detecting microbubble cavitation resulting from ultrasound waves transmitted from an ultrasound transducer include associating at least one time-domain reference signal with microbubble cavitation; causing the transducer to transmit one or more ultrasound pulse; acquiring, in the time domain, an echo signal from microbubbles in response to the transmitted ultrasound pulse(s); correlating at least a portion of the echo signal to at least a corresponding portion of the time-domain reference signal based on similarity therebetween; and detecting the microbubble cavitation based on the corresponding portion of the reference signal.
摘要:
A system (10) for treating tissue within a body is configured to deliver a first level of ultrasound energy to a target tissue region (42) for a first duration resulting in the generation of micro-bubbles (56) in the target tissue region, determine one or more characteristics of the target tissue region in the presence of the micro-bubbles, and deliver a second level of ultrasound energy to the target tissue region for a second duration, wherein one or both of the second energy level and the second duration are based, at least in part, on the determined one or more characteristics of the target tissue region.
摘要:
Embodiments of the present invention provide systems and methods to verify and/or obtain a registration of images obtained two image systems (such as a CT system and an MRI system) via the use of a third imaging modality (such as an ultrasound system).
摘要:
A focused ultrasound system includes a transducer array, a controller for providing drive signals to the transducer array, and a switch. The transducer array includes a plurality of “n” transducer elements, and the controller includes a plurality of “m” output channels providing sets of drive signals having respective phase shift values, “m” being less than “n.” The switch is coupled to the output channels of the controller and to the transducer elements, and is configured for connecting the output channels to respective transducer elements. The controller may assign the transducer elements to respective output channels based upon a size and/or shape of a desired focal zone within the target region, to steer or otherwise move a location of the focal zone, and/or to compensate for tissue aberrations caused by tissue between the transducer array and the focal zone, geometric tolerances and/or impedance variations of the transducer elements.
摘要:
A system (10) for treating tissue within a body is configured to deliver a first level of ultrasound energy to a target tissue region (42) for a first duration resulting in the generation of micro-bubbles (56) in the target tissue region, determine one or more characteristics of the target tissue region in the presence of the micro-bubbles, and deliver a second level of ultrasound energy to the target tissue region for a second duration, wherein one or both of the second energy level and the second duration are based, at least in part, on the determined one or more characteristics of the target tissue region.
摘要:
An image-guide therapy system comprises a thermal treatment device (e.g., an ultrasound transducer) configured for transmitting a therapeutic energy beam, and The system further comprises an imaging device (e.g., a magnetic resonant imaging (MRI) device) configured for acquiring images of the target tissue mass and the thermal treatment device. The system further comprises a controller configured for controlling thermal dose properties of the thermal treatment device to focus the energy beam on a target tissue mass located in an internal body region of a patient, and a processor configured for tracking respective positions of the thermal treatment device and the target tissue mass in a common coordinate system based on the acquired images. The system may optionally comprise a display configured for displaying the acquired images.