摘要:
A method of removing a defect from a gate stack on a substrate, comprises treating the gate stack with a plasma. The plasma comprises fluorine, the gate stack comprises a gate layer and a metallic layer, and substantially no photoresist is present on the substrate.
摘要:
A method for processing a substrate is provided. The method includes generating a controlled meniscus using a proximity head. The proximity head has a face in close proximity to a surface of the substrate, and the face includes a substantially flat surface. The controlled meniscus is generated by delivering a chemical to the meniscus through discrete nozzles formed in the face of the proximity head. The method includes moving the proximity head over the substrate so that an area of contact between the meniscus and the surface of the substrate moves from a first location to a second location on the substrate. The moving of the proximity head causes a chemical remainder to be left behind on the surface of the substrate at the first location. The chemical remainder being a layer of the chemical from the meniscus that adheres to the surface of the substrate. The method also includes balancing an amount of chemical being delivered to the proximity head with an amount of chemical removed from the meniscus so that the meniscus maintains a substantially constant volume of the chemical. The amount of chemical removed from the meniscus includes at least the chemical remainder left behind on the surface of the substrate.
摘要:
A system for processing a substrate is described. The system includes a proximity head, a mechanism, and a liquid supply. The proximity head is configured to generate a controlled meniscus. Specifically, the proximity head has a plurality of dispensing nozzles formed on a face of the proximity head. The dispensing nozzles are configured to supply a liquid to the meniscus and the suction holes are added to remove a used liquid from the meniscus. The mechanism moves the proximity head or the substrate with respect to each other while maintaining contact between the meniscus and a surface of the substrate. The movement causes a thin layer of the liquid to remain on the surface after being contacted by the meniscus. The liquid supply is in fluid communication with the dispensing nozzles, and is configured to balance an amount of the liquid delivered to the meniscus with an amount of liquid removed from the meniscus, the amount of liquid removed from the meniscus including at least the thin layer of the liquid remaining on the surface of the substrate.
摘要:
A method for processing a substrate is provided. The method includes generating a controlled meniscus using a proximity head. The proximity head has a face in close proximity to a surface of the substrate, and the face includes a substantially flat surface. The controlled meniscus is generated by delivering a chemical to the meniscus through discrete nozzles formed in the face of the proximity head. The method includes moving the proximity head over the substrate so that an area of contact between the meniscus and the surface of the substrate moves from a first location to a second location on the substrate. The moving of the proximity head causes a chemical remainder to be left behind on the surface of the substrate at the first location. The chemical remainder being a layer of the chemical from the meniscus that adheres to the surface of the substrate. The method also includes balancing an amount of chemical being delivered to the proximity head with an amount of chemical removed from the meniscus so that the meniscus maintains a substantially constant volume of the chemical. The amount of chemical removed from the meniscus includes at least the chemical remainder left behind on the surface of the substrate.
摘要:
A system for processing a substrate is described. The system includes a proximity head, a mechanism, and a liquid supply. The proximity head is configured to generate a controlled meniscus. Specifically, the proximity head has a plurality of dispensing nozzles formed on a face of the proximity head. The dispensing nozzles are configured to supply a liquid to the meniscus and the suction holes are added to remove a used liquid from the meniscus. The mechanism moves the proximity head or the substrate with respect to each other while maintaining contact between the meniscus and a surface of the substrate. The movement causes a thin layer of the liquid to remain on the surface after being contacted by the meniscus. The liquid supply is in fluid communication with the dispensing nozzles, and is configured to balance an amount of the liquid delivered to the meniscus with an amount of liquid removed from the meniscus, the amount of liquid removed from the meniscus including at least the thin layer of the liquid remaining on the surface of the substrate.
摘要:
A dual plasma process generates a microwave neutral plasma remote from a semiconductor wafer and a radio frequency (RF) ionized plasma adjacent to the wafer for simultaneous application to the wafer. A first gas flows through a microwave plasma generation area, without a second gas in the gas flow, to generate the neutral microwave plasma. The second gas is added to the gas flow downstream of the microwave plasma generation area prior to an RF plasma generation area.
摘要:
A dual plasma process generates a microwave neutral plasma remote from a semiconductor wafer and a radio frequency (RF) ionized plasma adjacent to the wafer for simultaneous application to the wafer. A first gas flows through a microwave plasma generation area, without a second gas in the gas flow, to generate the neutral microwave plasma. The second gas is added to the gas flow downstream of the microwave plasma generation area prior to an RF plasma generation area.
摘要:
Damaged surfaces of a low k carbon-containing silicon oxide dielectric material are treated with one or more carbon-containing gases, and in the absence of an oxidizing agent, to inhibit subsequent formation of silicon-hydroxyl bonds when the damaged surfaces of the low k dielectric material are thereafter exposed to moisture. The carbon-containing gas treatment of the invention is carried out after the step of oxidizing or “ashing” the resist mask to remove the mask, but prior to exposure of the damaged surfaces of the low k dielectric material to moisture. Optionally, the carbon-containing gas treatment may also be carried out after the initial step of etching the low k carbon-containing silicon oxide dielectric material to form vias or contact openings as well, particularly when exposure of the damaged surfaces of the low k dielectric material to moisture after the via etching step and prior to the resist removing oxidation step is possible. The treatment of the damaged low k carbon-containing silicon oxide dielectric material with a carbon-containing gas may be carried out with or without the assistance of a plasma, but preferably will be carried out in the presence of a plasma. An N2 densification step may also be carried out after the via etch step and optional carbon-containing gas treatment, but prior to the resist removal oxidation step.
摘要:
A film of low k dielectric material formed on a semiconductor substrate is treated to inhibit cracking of the film of low k dielectric material during subsequent exposure of the film of low k dielectric material to elevated temperatures by implanting the film of low k dielectric material with hydrogen ions by applying a negative DC bias to the semiconductor substrate in the presence of a plasma of hydrogen ions. The semiconductor substrate is mounted on an electrically conductive substrate support in a reactor and the negative DC bias is applied to the semiconductor substrate by connecting the electrically conductive substrate support to a source of negative DC bias while hydrogen ions are generated by the plasma in the reactor to thereby cause the hydrogen ions to implant into the film of low k dielectric material on the semiconductor substrate.