摘要:
A system for depositing thin single crystal silicon wafers by epitaxial deposition in a silicon precursor depletion mode with cross-flow deposition may include: a substrate carrier with low total heat capacity, high emissivity and small volume; a lamp module with rapid heat-up, efficient heat production, and spatial control over heating; and a manifold designed for cross-flow processing. Furthermore, the substrate carrier may include heat reflectors to control heat loss from the edges of the carrier and/or heat chokes to thermally isolate the carrier from the manifolds, allowing independent temperature control of the manifolds. The carrier and substrates may be configured for deposition on both sides of the substrates—the substrates having release layers on both sides and the carriers being configured to have equal process gas flow over both surfaces of the substrate. High volume may be addressed by a deposition system comprising multiple mini-batch reactors.
摘要:
Methods and apparatus for providing an improved azimuthal thermal uniformity of a substrate are provided herein. In some embodiments, a substrate support for use in a semiconductor process chamber includes a susceptor plate; and a supporting member to support a backside of the susceptor plate proximate an outer edge thereof, wherein the supporting member substantially covers the backside of the susceptor plate. In some embodiments, the substrate support is disposed in a process chamber having at least some lamps disposed below the supporting member and utilized for heating the back side of the susceptor plate.
摘要:
A method for processing a substrate including a pre-cleaning etch and reduced pressure process is disclosed. The pre-cleaning process involves introducing a substrate into a processing chamber; flowing an etching gas into the processing chamber; processing at least a portion of the substrate with the etching gas to remove a contaminated or damaged layer from a substrate surface; stopping flow of the etching gas; evacuating the processing chamber to achieve a reduced pressure in the chamber; and processing the substrate surface at the reduced pressure. Epitaxial deposition is then used to form an epitaxial layer on the substrate surface.
摘要:
Methods of depositing layers having reduced interfacial contamination are disclosed herein. The inventive methods may advantageously reduce contamination at the interface between deposited layers, for example, between a deposited layer and an underlying substrate or film. In some embodiments, a method of depositing a layer may include annealing a silicon-containing layer having a first layer disposed thereon in a reducing atmosphere; removing the first layer using an etching process to expose the silicon-containing layer after annealing; and depositing a second layer on the exposed silicon-containing layer.
摘要:
A pedestal positioning assembly system for use in a substrate processing system includes a pedestal rigidly attached to a pedestal shaft, a reference rigidly attached to the substrate processing system, a lateral adjustment assembly to adjust a lateral location of the pedestal relative to the reference, and a vertical adjustment assembly to adjust a tilt of the pedestal relative to the reference. The lateral adjustment assembly and the vertical adjustment assembly are external to a processing chamber and are coupled to the pedestal disposed within the processing chamber through the pedestal shaft. The reference can be a ring and the lateral adjustment assembly substantially centers the pedestal within the ring. A method of adjusting a pedestal includes leveling the pedestal, translating the pedestal, calibrating the pedestal height to a preheat ring level, and checking the level and location of the pedestal while rotating the pedestal.
摘要:
A method for processing a substrate including a pre-cleaning etch and reduced pressure process is disclosed. The pre-cleaning process involves introducing a substrate into a processing chamber; flowing an etching gas into the processing chamber; processing at least a portion of the substrate with the etching gas to remove a contaminated or damaged layer from a substrate surface; stopping flow of the etching gas; evacuating the processing chamber to achieve a reduced pressure in the chamber; and processing the substrate surface at the reduced pressure. Epitaxial deposition is then used to form an epitaxial layer on the substrate surface.
摘要:
A substrate processing system includes an optical measurement assembly coupled to an exterior of a processing chamber that has a portion that is transparent. The processing chamber includes a reference object and a pedestal for supporting a work piece. The optical measurement assembly measures a lateral location, a height and a tilt of the pedestal by transmitting light into the processing chamber through the transparent portion of the processing chamber and detecting a reflected light from both the reference object and the portion of the pedestal after the reflected light leaves the chamber through the transparent portion of the processing chamber. A method of adjusting a pedestal includes analyzing the reflected light and leveling the pedestal, translating the pedestal, calibrating the pedestal height to a preheat ring level, and checking the level and location of the pedestal in response to the analyzed reflected light.
摘要:
A pedestal positioning assembly system for use in a substrate processing system includes a pedestal rigidly attached to a pedestal shaft, a reference rigidly attached to the substrate processing system, a lateral adjustment assembly to adjust a lateral location of the pedestal relative to the reference, and a vertical adjustment assembly to adjust a tilt of the pedestal relative to the reference. The lateral adjustment assembly and the vertical adjustment assembly are external to a processing chamber and are coupled to the pedestal disposed within the processing chamber through the pedestal shaft. The reference can be a ring and the lateral adjustment assembly substantially centers the pedestal within the ring. A method of adjusting a pedestal includes leveling the pedestal, translating the pedestal, calibrating the pedestal height to a preheat ring level, and checking the level and location of the pedestal while rotating the pedestal.
摘要:
A system for depositing thin single crystal silicon wafers by epitaxial deposition in a silicon precursor depletion mode with cross-flow deposition may include: a substrate carrier with low total heat capacity, high emissivity and small volume; a lamp module with rapid heat-up, efficient heat production, and spatial control over heating; and a manifold designed for cross-flow processing. Furthermore, the substrate carrier may include heat reflectors to control heat loss from the edges of the carrier and/or heat chokes to thermally isolate the carrier from the manifolds, allowing independent temperature control of the manifolds. The carrier and substrates may be configured for deposition on both sides of the substrates—the substrates having release layers on both sides and the carriers being configured to have equal process gas flow over both surfaces of the substrate. High volume may be addressed by a deposition system comprising multiple mini-batch reactors.
摘要:
Methods of depositing layers having reduced interfacial contamination are disclosed herein. The inventive methods may advantageously reduce contamination at the interface between deposited layers, for example, between a deposited layer and an underlying substrate or film. In some embodiments, a method of depositing a layer may include annealing a silicon-containing layer having a first layer disposed thereon in a reducing atmosphere; removing the first layer using an etching process to expose the silicon-containing layer after annealing; and depositing a second layer on the exposed silicon-containing layer.