Abstract:
A quantum cryptographic key distribution system, including: an optical source, which generates a plurality of optical pulses; an optical beam splitter, which generates, starting from each optical pulse, a first and a second optical sub-pulse; a first and a second peripheral device; and an optical path having a first and a second end connected to the optical beam splitter, the optical path extending through the first and second peripheral devices and being traversed in opposite directions by the first and second optical sub-pulses. The peripheral device randomly phase shifts the second optical sub-pulse by a first phase, and the second peripheral device randomly phase shifts the first optical sub-pulse by a second phase. Furthermore, the optical path is such as to cause interference in the first optical beam splitter between the first and second optical sub-pulses, as a function of first and second phases.
Abstract:
A method and system for the estimation and correction of the multipath delay is described. The method comprising analyzing the distortion of the autocorrelation function of each single impulse received with that of an ideal impulse, deriving back the variation of the impulse parameters and estimating the effect of the multipart to be taken into account for compensation on the estimation of the time of arrival (TOA) of the electromagnetic signal.
Abstract:
The disclosure concerns an external vision and/or weapon aiming and firing system for a military land vehicle and/or a military aircraft and/or a military naval unit. The system comprises: a video capture device configured to capture a video stream of a scene outside the military land vehicle or the military aircraft or the military naval unit; an electronic control unit configured to insert an aiming reticle in the images of said video stream, thereby generating a corresponding output video stream; and a user interface configured to display the output video stream generated by the electronic control unit. The electronic control unit is programmed to automatically change the colour of the aiming reticle so as to maximize its contrast with respect to a predefined region of the images of the video stream centred on said aiming reticle.
Abstract:
The invention regards an external vision and/or weapon aiming system (1) for a military land vehicle and/or a military naval unit. The system comprises: two sensors (11, 12) configured to capture video streams of a same external scene, each in a respective spectral band; an electronic processing unit (13) configured to insert a respective aiming reticle in the images of each captured video stream, thereby generating a corresponding pre-processed video stream, and to process the two pre-processed video streams; and a user interface (14) configured to display a video stream received from the electronic processing unit (13). The system is characterized in that the electronic processing unit (13) is configured to process the two pre-processed video streams by means of image enhancement and picture-in-picture functionalities, thereby generating first and second enhanced video streams.
Abstract:
One or more embodiments of the invention concern a device comprising: a cathode that lies on a cathode plane and includes, in an active region one or more cathode straight-finger-shaped terminals with a main extension direction parallel to a first reference direction; for each cathode terminal, one or more electron emitters formed on, and in ohmic contact with, said cathode terminal; and a gate electrode that lies on a gate plane parallel to, and spaced apart from, said cathode plane, does not overlap the cathode and includes, in the active region, two or more gate straight-finger-shaped terminals with a main extension direction parallel to the first reference direction; wherein the gate terminals are interlaced with said cathode terminal(s).
Abstract:
The invention concerns a device in the domain of AESA (“Active Electronically Scanned Array”) systems required for e.g. radar multifunctional systems with communication capabilities and electronic/analysis countermeasures, providing a constructive element for the realization of modular active radiating panels, which are economic and scalable depending on the system needs, to be used on multi-roles and multi-domains platforms. The architecture according to the invention presents a so-called “tile” architecture and uses a multilayer configuration incorporating the radiating elements, the control and supply controls, the transmitting/receiving (T/R) modules, the cooling system by using vertical interconnections, having a low cost and high integration.
Abstract:
The disclosure concerns an external vision and/or weapon aiming and firing system for a military land vehicle and/or a military aircraft and/or a military naval unit. The system comprises: a video capture device configured to capture a video stream of a scene outside the military land vehicle or the military aircraft or the military naval unit; an electronic control unit configured to insert an aiming reticle in the images of said video stream, thereby generating a corresponding output video stream; and a user interface configured to display the output video stream generated by the electronic control unit. The electronic control unit is programmed to automatically change the color of the aiming reticle so as to maximize its contrast with respect to a predefined region of the images of the video stream centerd on said aiming reticle.
Abstract:
A method for estimating the noise of a two-photon entangled state, including generating pairs of photons; for each pair of photons, defining a first polarization measurement, associated with a first angle and defining a second polarization measurement, associated with a second angle. The method includes generating a first string of polarization measurements and a first string of angles; generating a second string of polarization measurements and a second string of angles; generating a first uncorrelated substring, formed by the polarization measurements of the first string associated with angles that are different from the corresponding angles of the second string of angles; generating a second uncorrelated substring, formed by the polarization measurements of the second string associated with angles that are different from the corresponding angles of the first string of angles; and determining an estimate of the noise on the basis of the first and the second uncorrelated substrings.
Abstract:
A radial slot antenna (1; 60) comprising a radial waveguide, which includes an upper plate (5), having a centroid (O) and an edge region (14) and provided with a plurality of radiating apertures (4), formed as slots in the upper plate (5), which develop according to an ideal annular pattern (16) around the centroid (O). The radiating apertures (4) are arranged in such a way as to form at least one first radiating region (31a) and one second radiating region (31b), which are distinct and radially separated by a dwell region (33a) without radiating apertures and wherein, in the first and second radiating regions (31a, 31b), radially adjacent radiating apertures (4) are separated from one another by a respective mutual radial distance, the dwell region (33a) having a radial width (δ) greater than the mutual radial distances of the radiating apertures (4) in the first and second radiating regions (31a, 31b). The slot antenna further comprises a signal feeder (10) operable for supplying am electromagnetic field (Ψ0, Ψ1) so as to assume, in the first and second radiating regions, opposite phases, in such a way that the electromagnetic field emitted by the slot antenna can be expressed via Bessel functions.
Abstract:
An aiming system for portable weapons comprising pairs of inertial sensors of gyroscopic, accelerometer and magnetometric type arranged respectively on a weapon and on an helmet with Head Up Display, so as to determine both the relative orientation and the relative position in space of the weapon and of the helmet, with consequent display of the line of fire on the Head Up Display.