Abstract:
Memory power management systems and methods are provided. One embodiment of the present invention includes a memory power management system. The system comprises a first low dropout (LDO) regulator that provides an active operating voltage that is derived from a first supply voltage to power a memory array during an active mode. The system further comprises a second LDO regulator that provides a minimum memory retention voltage that is derived from a second supply voltage to power the memory array in a standby mode, wherein the second supply voltage also powers at least one peripheral circuit for reading from and/or writing to the memory array.
Abstract:
In a method and system for data retention, a data input is latched by a first latch. A second latch coupled to the first latch receives the data input for retention while the first latch is inoperative in a standby power mode. The first latch receives power from a first power line that is switched off during the standby power mode. The second latch receives power from a second power line. A controller receives a clock input and a retention signal and provides a clock output to the first latch and the second latch. A change in the retention signal is indicative of a transition to the standby power mode. The controller continues to hold the clock output at a predefined voltage level and the second latch continues to receive power from the second power line in the standby power mode, thereby retaining the data input.
Abstract:
A computer system comprising a control logic and a storage coupled to the control logic. The storage comprises a plurality of bitcells and bitlines used to transfer data between the control logic and the bitcells. The control logic provides an address of a target bitcell to the storage. Within a single clock cycle, the storage uses the address to activate the target bitcell, to precharge bitlines coupled to the target bitcell, and to access the target bitcell.
Abstract:
A power management system (12) in an electronic device (10). The system comprises circuitry (14x), responsive to at least one system parameter, for providing data processing functionality, where the circuitry for providing data processing functionality comprises a data path (CPx). The system alternatively or cumulatively also comprises circuitry (22x) for indicating a potential capability of operational speed of the data path and/or circuitry (24x) for indicating an amount of current leakage of the circuitry for providing data processing functionality. The system also comprises circuitry (26) for adjusting the at least one system parameter in response to either or both of the circuitry for indicating a potential capability and the circuitry for indicating an amount of current leakage.
Abstract:
State retention registers for use in low-power standby modes of digital IC operation are provided, wherein: a differential circuit (M1−M3; M1−M4) is used to load the shadow latch from the normal functional latch; the signal (REST, RESTZ) used to restore data from the shadow latch to the normal functional latch is a “don't care” signal while the shadow latch is retaining the data during low-power standby mode; retained data from the shadow latch is restored to the normal functional latch via a transistor gate connected to a node (N10) of the shadow latch where the retained data is provided; a power supply (VDD) other than the shadow latch's power supply (VRETAIN) powers the data restore operation; and the normal functional latch is operable independently of the operational states of the high Vt transistors (M1, M2, M5 and M6; M3, M4, M5 and M6) used to implement the state retention functionality. In addition, an isolation apparatus is provided to retain an output of a logic module while the logic module is powered-down.
Abstract:
A multiplexer has first, second, third and fourth inputs receiving respective first, second, third and fourth input signals, having first and second control inputs receiving respective first and second select input signals and an output. Each of the four input signals is supplied to the input of a CMOS transmission gate. The first and second transmission gates are clocked via the first select signal and its inverse in a first phase. The third and fourth transmission gates are clocked via the first select signal and its inverse in a second phase, opposite to the first phase. A first embodiment includes a first intermediate inverter having an input connected jointly to the outputs of the first and second transmission gates and a second intermediate inverter having an input connected jointly to the outputs of the third and fourth transmission gates. The multiplexer output is provides by a fifth and a sixth transmission gate oppositely clocked via the second control signal input and coupled to the first and second intermediate inverters, respectively. A second embodiment employs double pass logic in place of the fifth and sixth transmission gates and an output inverter. A third embodiment employs two oppositely clocked tristate inverters for output. A fourth embodiment employs N-type MOSFETs instead of transmission gates. A P-type MOSFET provides feedback to an output inverter to reduce possible static power dissipation.
Abstract:
Memory power management systems and methods are provided. One embodiment of the present invention includes a memory power management system. The system comprises a first low dropout (LDO) regulator that provides an active operating voltage that is derived from a first supply voltage to power a memory array during an active mode. The system further comprises a second LDO regulator that provides a minimum memory retention voltage that is derived from a second supply voltage to power the memory array in a standby mode, wherein the second supply voltage also powers at least one peripheral circuit for reading from and/or writing to the memory array.
Abstract:
System and method for providing power to circuitry while avoiding a large transient current. A preferred embodiment comprises a distributed switch (such as switch arrangement 400) with a plurality of switches (such as switch 405) coupling a power supply to the circuitry. Each switch is individually controlled by a control signal and is turned on sequentially. Also coupled to each switch is a pre-driver circuit (such as pre-driver circuit 410). The pre-driver circuit comprises a potential adjust circuit (such as potential adjust circuit 505) that rapidly adjusts a voltage potential at the switch and a rate adjust circuit (such as the rate adjust circuit 520) that accelerates the power ramp-up across the switch once transient currents are no longer a concern. Adjusting the voltage potential so that the switch operates in a saturation mode increases an effective capacitance across the switch and thereby retarding the power ramp-up across the switch.
Abstract:
A method includes parsing a design of the integrated circuit to define cells in automatic power gating power domains, automatically creating an automatic power gating power domain netlist from the parsed design of the integrated circuit, and placing and routing the automatic power gating power domain netlist to produce a layout for the integrated circuit. The parsing partitions a high-level power domain of the integrated circuit into one or more automatic power gating power domains. The automatic power gating power domains have substantially zero-cycle power up times, thereby enabling transparent operation. Furthermore, the automatic power gating power domains may be automatically inserted into designs of integrated circuits, thereby relieving integrated circuit designers of the task of inserting power domains and associated hardware and software.
Abstract:
System and method for detecting transistor failure in large-scale integrated circuits by measuring IDDQ. A preferred embodiment comprises a switch structure for an integrated circuit made up of a plurality of main switches (such as main switch 410) selectively coupling a power sub-domain to a power source pin, a plurality of pi-switches (such as pi-switch 415) selectively coupling pairs of power sub-domains, and a plurality of IDDQ switches (such as IDDQ switch 425) selectively coupling the power sub-domains to a VIDDQ pin. The pi-switches can decouple the power sub-domains while the IDDQ switches can enable the measurement of the quiescent current in the power sub-domains. The use of pi-switches and IDDQ switches can permit the measurement of the quiescent current in the power sub-domains without requiring the use of isolation buffers and needed to powering on and off the integrated circuit between current measurements in the different power sub-domains.