Abstract:
The present disclosure relates to a filamentary structure manufactured during 3D printing by fused filament fabrication, the filamentary structure comprising a continuous strand comprising a thermoplastically workable material and filler particles, wherein the filler particles comprise hexagonal boron nitride particles comprising hexagonal boron nitride platelets. The present disclosure further relates to a 3D printable filament for manufacturing said filamentary structure, to a 3D printed component part formed from said filamentary structure, to a 3D printing method for making said 3D printed component part, and to the use of said component part.
Abstract:
Provided are materials for a formed body comprising hexagonal boron nitride and such formed bodies. Also provided are heat-treated formed body obtained by heat-treating the formed bodies. The invention further relates to processes for making the formed body and the heat-treated formed body.
Abstract:
The present disclosure relates to a separating device for removing solid particles from fluids, and to the use of said separating device for removing solid particles from fluids.
Abstract:
The invention relates to a method for producing a component part having a wall thickness of at most 3 mm on at least one part of the component part, comprising the method step of injection molding by means of an injection mold in an injection molding machine using a polymer/boron nitride compound, wherein the polymer/boron nitride compound comprises a thermoplastically processable polymer material and a heat-conducting filler, wherein the filler comprises platelet-shaped hexagonal boron nitride particles and wherein the injection rate during injection-molding is at most 200 mm/s. The invention further relates to a component part produced using such a method and a polymer/boron nitride compound for producing such a component part. The invention further relates to the use of such a component part for heat dissipation of component parts and assemblies to be cooled.
Abstract:
The present disclosure relates to a thermally conductive pressure sensitive adhesive composition, comprising: a) an acrylic polymer component; and b) a boron nitride mixture composition comprising: i. anisotropic boron nitride agglomerates comprising hexagonal boron nitride primary particles, wherein the hexagonal boron nitride primary particles have an average primary particle size d50 comprised between 1 and 50 micrometer, wherein the anisotropic boron nitride agglomerates have an average agglomerate size d50 comprised between 50 and 250 micrometer and an aspect ratio greater than 1.5, and wherein the envelope density of the anisotropic boron nitride agglomerates is greater than 1 g/cm3?, when measured according to the test method described in the experimental section; and ii. (optionally), free hexagonal boron nitride primary particles having an average primary particle size d50 comprised between 3 and 50 micrometer; and wherein the content of the boron nitride mixture composition is greater than 15 vol %, based on the volume of the thermally conductive pressure sensitive adhesive composition. The present disclosure also relates to a method of manufacturing such thermally conductive pressure sensitive adhesives and uses thereof.
Abstract:
The invention relates to a method for producing a component part having a wall thickness of at most 3 mm on at least one part of the component part, comprising the method step of injection molding by means of an injection mold in an injection molding machine using a polymer/boron nitride compound, wherein the polymer/boron nitride compound comprises a thermoplastically processable polymer material and a heat-conducting filler, wherein the filler comprises platelet-shaped hexagonal boron nitride particles and wherein the injection rate during injection-molding is at most 200 mm/s. The invention further relates to a component part produced using such a method and a polymer/boron nitride compound for producing such a component part. The invention further relates to the use of such a component part for heat dissipation of component parts and assemblies to be cooled.
Abstract translation:本发明涉及一种用于制造在部件的至少一部分上具有至多3mm的壁厚的部件的方法,包括在注射成型机中使用注塑机注射成型的方法步骤 聚合物/氮化硼化合物,其中所述聚合物/氮化硼化合物包含热塑性可加工聚合物材料和导热填料,其中所述填料包括片状六方氮化硼颗粒,并且其中注射成型期间的注射速率为至多200 mm / s。 本发明还涉及使用这种方法制造的部件部件和用于制造这种部件的聚合物/氮化硼化合物。 本发明还涉及这种部件用于要冷却的部件和组件的散热的用途。
Abstract:
The present disclosure relates to a filamentary structure manufactured during 3D printing by liquid deposition modelling, the filamentary structure comprising a continuous strand comprising a matrix material and filler particles, wherein the filler particles comprise hexagonal boron nitride particles comprising hexagonal boron nitride platelets. The present disclosure further relates to a 3D printable ink composition for manufacturing said filamentary structure, to a 3D printed component part formed from said filamentary structure, to a 3D printing method for making said 3D printed component part, and to the use of said component part.
Abstract:
The present disclosure relates to a separating device for removing solid particles from fluids, and to the use of said separating device for removing solid particles from fluids.
Abstract:
The present disclosure relates to a filamentary structure manufactured during 3D printing by liquid deposition modelling, the filamentary structure comprising a continuous strand comprising a matrix material and filler particles, wherein the filler particles comprise hexagonal boron nitride particles comprising hexagonal boron nitride platelets. The present disclosure further relates to a 3D printable ink composition for manufacturing said filamentary structure, to a 3D printed component part formed from said filamentary structure, to a 3D printing method for making said 3D printed component part, and to the use of said component part.
Abstract:
Provided are formed bodies comprising hexagonal boron nitride wherein the formed body has a Brinell hardness of at least 2 HBW 2,5/2, and wherein the formed body is obtainable by a process at temperatures of at most 100° C., and wherein the Brinell hardness is measured according to DIN EN ISO 6506-1 (2013). Further provided are processes for making said formed body.