Abstract:
The present disclosure provides a multilayer article. The multilayer article includes a) a microfiltration membrane substrate; b) a first layer directly attached to the first major surface of the microfiltration membrane substrate; and c) a second layer directly attached to the first layer. The first layer includes a first polymeric binder and acid-sintered interconnected first silica nanoparticles arranged to form a continuous three-dimensional porous network. The second layer includes acid-sintered interconnected second silica nanoparticles arranged to form a continuous three-dimensional porous network. The present disclosure also provides a method for forming a multilayer article. The method includes (a) saturating a microfiltration membrane substrate with a liquid; (b) applying a first aqueous coating formulation to at least a portion of a first major surface of the microfiltration membrane substrate to form a coated substrate; (c) sintering the coated substrate, thereby forming a first layer; (d) applying a second aqueous coating formulation to the first major surface of the first layer to form a twice-coated substrate; and (e) sintering the twice-coated substrate.
Abstract:
Provided are method of producing a shaped fluoroelastomer articles. The methods include subjecting a composition comprising a fluoroelastomer to additive processing in an additive processing device. Also provided are articles obtained with the methods and 3D-printable compositions.
Abstract:
A method of making a coated article is described comprising providing an inorganic substrate and coating the substrate with a coating composition. The coating composition comprises a plurality of siloxane nanoparticles dispersed in an organic solvent. A portion of the nanoparticles comprise the reaction product of a first alkoxy silane compound having a first organofunctional group and a second organofunctional group of a second compound and the reaction between the first and second organofunctional groups form an organic linking group. The method further comprises drying the coating composition and heating the coated substrate to volatilize the organic linking groups thereby forming a porous surface layer on the inorganic substrate. In another embodiment an article is described comprising an inorganic substrate, such as glass, and a porous inorganic (e.g. silica) surface layer having an average pore size of less than 30 nm. Also described are coating compositions and methods of making a nanoparticle coating compositions.
Abstract:
The present disclosure provides a multilayer article. The multilayer article includes a) a microfiltration membrane substrate; b) a first layer directly attached to the first major surface of the microfiltration membrane substrate; and c) a second layer directly attached to the first layer. The first layer includes a first polymeric binder and acid-sintered interconnected first silica nanoparticles arranged to form a continuous three-dimensional porous network. The second layer includes acid-sintered interconnected second silica nanoparticles arranged to form a continuous three-dimensional porous network. The present disclosure also provides a method for forming a multilayer article. The method includes (a) saturating a microfiltration membrane substrate with a liquid; (b) applying a first aqueous coating formulation to at least a portion of a first major surface of the microfiltration membrane substrate to form a coated substrate; (c) sintering the coated substrate, thereby forming a first layer; (d) applying a second aqueous coating formulation to the first major surface of the first layer to form a twice-coated substrate; and (e) sintering the twice-coated substrate.
Abstract:
A method of making a coatable composition includes: providing a first composition comprising silica nanoparticles dispersed in an aqueous liquid vehicle, wherein the first composition has a pH greater than 6; acidifying the first composition to a pH of less than or equal to 4 using inorganic acid to provide a second composition; and dissolving at least one metal compound in the second composition to form the coatable composition. The silica nanoparticles have a polymodal particle size distribution, wherein the polymodal particle size distribution comprises a first mode having a first particle size in the range of from 8 to 35 nanometers, wherein the polymodal particle size distribution comprises a second mode having a second particle size in the range of from 2 to 20 nanometers, wherein the first particle size is greater than the second particle size. Coatable compositions, antistatic compositions, preparable by the method are also disclosed. Soil-resistant articles including the antistatic compositions are also disclosed.
Abstract:
Articles are described including a first microfiltration membrane layer having a first major surface and a second major surface disposed opposite the first major surface, and a first silica layer directly attached to the first major surface of the first microfiltration membrane layer. The first silica layer includes a polymeric binder and acid-sintered interconnected silica nanoparticles arranged to form a continuous three-dimensional porous network. A method of making an article is also described, including providing a first microfiltration membrane layer having a first major surface and a second major surface disposed opposite the first major surface, and forming a first silica layer on the first major surface.
Abstract:
A method of making a coated article is described comprising providing an inorganic substrate and coating the substrate with a coating composition. The coating composition comprises a plurality of siloxane nanoparticles dispersed in an organic solvent. A portion of the nanoparticles comprise the reaction product of a first alkoxy silane compound having a first organofunctional group and a second organofunctional group of a second compound and the reaction between the first and second organofunctional groups form an organic linking group. The method further comprises drying the coating composition and heating the coated substrate to volatilize the organic linking groups thereby forming a porous surface layer on the inorganic substrate. In another embodiment an article is described comprising an inorganic substrate, such as glass, and a porous inorganic (e.g. silica) surface layer having an average pore size of less than 30 nm. Also described are coating compositions and methods of making a nanoparticle coating compositions.
Abstract:
A method of making a coatable composition includes: a) providing a initial composition comprising silica nanoparticles dispersed in an aqueous liquid medium, wherein the silica nano articles have a particle size distribution with an average particle size of less than or equal to 100 nanometers, and wherein the silica sol has a pH greater than 6; b) acidifying the initial composition to a pH of less than or equal to 4 using inorganic acid to provide an acidified composition; and c) dissolving at least one metal compound in the acidified composition to provide a coatable composition. Coatable compositions and soil-resistant compositions, preparable by the method, are also disclosed. Soil-resistant articles including the soil-resistant compositions are also disclosed.
Abstract:
Described herein is a curable composition comprising an amorphous fluoropolymer having an iodine, bromine and/or nitrile cure site; a peroxide cure system comprising a peroxide and a Type II coagent; and a photoinitiator, wherein the curable composition is substantially free of a binder material. Also described herein, are methods of curing the curable composition using actinic radiation and articles thereof.
Abstract:
Provided are method of producing a shaped fluoropolymer articles. The methods include subjecting a composition comprising a fluoropolymer to additive processing in an additive processing device. Also provided are articles obtained with the methods and 3D-printable compositions.