Abstract:
A semiconductor switching circuit includes a main current branch which includes at least one main semiconductor switching element and through which current flows in a first direction when the or each main semiconductor switching element is switched on. The semiconductor switching circuit also includes an auxiliary current branch that is connected in parallel with the main current branch. The auxiliary current branch includes at least one auxiliary semiconductor switching element. One or more control units are configured to switch on the or each auxiliary semiconductor switching element as the or each main semiconductor switching element is switched on to selectively create an alternative current path via the auxiliary current branch whereby current flowing in the first direction through the main current branch is diverted instead to flow through the alternative current path to reduce the rate of change of current flowing through the or each main semiconductor switching element.
Abstract:
A power electronic converter for use in high voltage direct current power transmission and reactive power compensation comprises a plurality of switching elements interconnecting in use a DC network and one or more AC networks, the plurality of switching elements being controllable in use to facilitate power conversion between the AC and DC networks, wherein in use, the plurality of switching elements are controllable to form one or more short circuits within the power electronic converter so as to define one or more primary current flow paths, the or each primary current flow path including a respective one of the AC networks and the power electronic converter and bypassing the DC network.
Abstract:
A circuit breaker apparatus (32) comprises one module (30) or a plurality of series-connected modules (30), the or each module (30) including: first and second conduction paths (34, 36); and first and second terminals (38, 40) for connection to an electrical network (42), each conduction path (34, 36) extending between the first and second terminals (38, 40); the first conduction path (34) including a first vacuum switching element (52) to selectively close to allow current to flow between the first and second terminals (38, 40) through the first conduction path (34) in a first mode of operation, or open to block current from flowing between the first and second terminals (38, 40) through the first conduction path (34) in a second mode of operation; the second conduction path (36) including a second vacuum switching element (56) to selectively open to block current from flowing between the first and second terminals (38, 40) through the second conduction path (36) in the first mode of operation, or close to allow current to flow between the first and second terminals (38,40) through the second conduction path (36) in the second mode of operation, wherein the first and second vacuum switching elements (34, 36) define a break-before-make switching arrangement; the second conduction path (36) further including a primary energy storage device (74) to oppose current flowing between the first and second terminals (38, 40) through the second conduction path (36) in the second mode of operation; and the or each module (30) further including a commutation circuit (72) to establish a resonant current in the first vacuum switching element to quench an arc current appearing across the first vacuum switching element (52) in the second mode of operation.
Abstract:
A power electronic converter for use in high voltage direct current power transmission and reactive power compensation comprises a plurality of switching elements interconnecting in use a DC network and one or more AC networks, the plurality of switching elements being controllable in use to facilitate power conversion between the AC and DC networks, wherein in use, the plurality of switching elements are controllable to form one or more short circuits within the power electronic converter so as to define one or more primary current flow paths, the or each primary current flow path including a respective one of the AC networks and the power electronic converter and bypassing the DC network.
Abstract:
A current limiter for selectively limiting a rate of change of current in a DC electrical network may include a first electrical block including an inductive element and a second electrical block including a bidirectional switch. The first electrical block is connected in parallel with the second electrical block between first and second terminals, and the first and second terminals are connectable to the DC electrical network. The bidirectional switch is switchable to: (1) a first mode to permit current flow through the second electrical block in a first current direction and at the same time inhibit current flow through the second electrical block in a second, opposite current direction; and (2) a second mode to permit current flow through the second electrical block in the second current direction and at the same time inhibit current flow through the second electrical block in the first current direction.
Abstract:
A circuit interruption device includes a main branch; a secondary branch having an electrical on-resistance which is higher than an electrical on-resistance of the main branch; and first and second terminals for connection to an electrical network, the main and secondary branches extending between the first and second terminals. The main branch includes a switching apparatus which is switchable to selectively allow current to flow in the main branch in a normal mode of operation or commutate current from the main branch to the secondary branch in a fault mode of operation. The secondary branch includes a switching device, the switching device including a normally-on switching element. The secondary branch further includes a control unit in communication with the normally-on switching element. The secondary branch further includes a power extraction circuit which is electrically coupled with the control unit. During the normal mode of operation the normally-on switching element is in an on-state to permit the secondary branch to conduct current, and during the fault mode of operation the control unit controls the switching of the or each normally-on switching element to an off-state to inhibit current flow in the secondary branch.
Abstract:
An electrical field shielding assembly comprises at least one electrically conductive, shielding element (12) that is hingably mounted on the electrical field shielding assembly, wherein the or each shielding element (12) is hingably movable between an open position in which an access opening in the electrical field shielding assembly is created and a closed position in which the access opening in the electrical field shielding assembly is closed.
Abstract:
A switching device (28) comprising a primary switching block (30) including at least one semiconductor switch (34); and a switching control unit (32) to control the switching of the or each semiconductor switch (34). The switching device further includes a crowbar circuit (46) comprising a crowbar switch (56) switchable to selectively allow current to flow through the crowbar switch (56) in order to bypass the or each switching module; and a secondary switching block including a switching element (58) connected across a control electrode and a cathode of the crowbar switch (56). The switching element (58) is in communication with the switching control unit (32) to receive, in use, a control signal (66) generated by the switching control unit (32) when the primary switching block (30) is operating within predefined operating parameters.
Abstract:
A current limiter for selectively limiting a rate of change of current in a DC electrical network may include a first electrical block including an inductive element and a second electrical block including a bidirectional switch. The first electrical block is connected in parallel with the second electrical block between first and second terminals, and the first and second terminals are connectable to the DC electrical network. The bidirectional switch is switchable to: (1) a first mode to permit current flow through the second electrical block in a first current direction and at the same time inhibit current flow through the second electrical block in a second, opposite current direction; and (2) a second mode to permit current flow through the second electrical block in the second current direction and at the same time inhibit current flow through the second electrical block in the first current direction.
Abstract:
An electrical apparatus (10) comprises: first and second terminals (18,20) for connection to an electrical circuit; a chain-link converter (22) connected between the first and second terminals (18,20), the chain-link converter (22) including a plurality of chain-link modules (24), each chain-link module (24) including at least one switching element (26) and at least one energy storage device (28), the or each switching element (26) and the or each energy storage device (28) of each chain-link module (24) combining to selectively provide a voltage source; and a protection device (32) connected across an electrical block (34) that includes at least two of the plurality of chain-link modules (24), the protection device (32) including a plurality of series-connected semiconductor devices (36), wherein the protection device (32) selectively provides a current-conductive path to allow at least part of a current flowing in the electrical apparatus (10) to bypass the electrical block (34).