Abstract:
Methods, systems, apparatus, and computer program products that include, on a first device executing a first instance of a location application, receiving an indication to begin sharing data describing a path traveled by the first device, receiving location data describing the path traveled by the first device, the location data received from a location system of the first device, and the location data including a plurality of locations of the first device, and transmitting the location data in a form usable to enable a user interface of a second instance of a location application executing on a second device to indicate the path traveled by the first device.
Abstract:
Methods, systems, apparatus, and computer program products that include, on a first device executing a first instance of a location application, receiving an indication to begin sharing data describing a path traveled by the first device, receiving location data describing the path traveled by the first device, the location data received from a location system of the first device, and the location data including a plurality of locations of the first device, and transmitting the location data in a form usable to enable a user interface of a second instance of a location application executing on a second device to indicate the path traveled by the first device.
Abstract:
A method includes, in a storage device that includes a non-volatile memory and a volatile memory, maintaining at least one data structure that stores management information used for managing data storage in the non-volatile memory, such that at least a portion of the data structure is stored in the volatile memory. A sequence of journaling chunks is created during operation of the storage device, each journaling chunk including a respective slice of the data structure and one or more changes that occurred in the data structure since a previous journaling chunk in the sequence. The sequence of the journaling chunks is stored in the non-volatile memory. Upon recovering from an electrical power interruption in the storage device, the data structure is reconstructed using the stored journaling chunks.
Abstract:
Systems and methods for handling sudden power failures in non-volatile memory devices such as solid state drives are provided by having the non-volatile memory device boot up in a low power write mode, which limits substantially all programming operations to a single level cell (SLC) mode, as opposed to a normal mode in which the programming operations can be performed in a multi-level cell (MLC) mode. Thus, if the system experiences a sudden power failure when it is being powered solely by AC derived power and the battery is below a level sufficient for powering the device while it is programming in the SLC mode, data integrity will be preserved because the programming operation was being performed in SLC mode. The non-volatile memory device may be permitted to exit out the low power write mode into the normal mode when the charge level of the battery is sufficient for powering the system.
Abstract:
Methods, systems, apparatus, and computer program products that include, on a first device executing a first instance of a location application, receiving an indication to begin sharing data describing a path traveled by the first device, receiving location data describing the path traveled by the first device, the location data received from a location system of the first device, and the location data including a plurality of locations of the first device, and transmitting the location data in a form usable to enable a user interface of a second instance of a location application executing on a second device to indicate the path traveled by the first device.
Abstract:
Methods, systems, apparatus, and computer program products that include, on a first device executing a first instance of a location application, receiving an indication to begin sharing data describing a path traveled by the first device, receiving location data describing the path traveled by the first device, the location data received from a location system of the first device, and the location data including a plurality of locations of the first device, and transmitting the location data in a form usable to enable a user interface of a second instance of a location application executing on a second device to indicate the path traveled by the first device.
Abstract:
Methods, systems, apparatus, and computer program products that include, on a first device executing a first instance of a location application, receiving an indication to begin sharing data describing a path traveled by the first device, receiving location data describing the path traveled by the first device, the location data received from a location system of the first device, and the location data including a plurality of locations of the first device, and transmitting the location data in a form usable to enable a user interface of a second instance of a location application executing on a second device to indicate the path traveled by the first device.
Abstract:
A method includes, in a storage device that includes a non-volatile memory and a volatile memory, maintaining at least one data structure that stores management information used for managing data storage in the non-volatile memory, such that at least a portion of the data structure is stored in the volatile memory. A sequence of journaling chunks is created during operation of the storage device, each journaling chunk including a respective slice of the data structure and one or more changes that occurred in the data structure since a previous journaling chunk in the sequence. The sequence of the journaling chunks is stored in the non-volatile memory. Upon recovering from an electrical power interruption in the storage device, the data structure is reconstructed using the stored journaling chunks.
Abstract:
Methods, systems, apparatus, and computer program products that include, on a first device executing a first instance of a location application, receiving an indication to begin sharing data describing a path traveled by the first device, receiving location data describing the path traveled by the first device, the location data received from a location system of the first device, and the location data including a plurality of locations of the first device, and transmitting the location data in a form usable to enable a user interface of a second instance of a location application executing on a second device to indicate the path traveled by the first device.
Abstract:
Systems and methods for handling sudden power failures in non-volatile memory devices such as solid state drives are provided by having the non-volatile memory device boot up in a low power write mode, which limits substantially all programming operations to a single level cell (SLC) mode, as opposed to a normal mode in which the programming operations can be performed in a multi-level cell (MLC) mode. Thus, if the system experiences a sudden power failure when it is being powered solely by AC derived power and the battery is below a level sufficient for powering the device while it is programming in the SLC mode, data integrity will be preserved because the programming operation was being performed in SLC mode. The non-volatile memory device may be permitted to exit out the low power write mode into the normal mode when the charge level of the battery is sufficient for powering the system.