Abstract:
Methods, apparatuses and computer readable media are described that manage transmit power levels for a wireless device connected to a network access system of a wireless network. Processing circuitry in the wireless device obtains a target average transmit power level. Based on estimates of an actual average transmit power level for a sliding window of a past time period and the target average transmit power level, the processing circuitry determines a target transmit power level, a duty cycle percentage, and a transmit pattern of transmit on frames and transmit off frames for a future time period. The processing circuitry sends to the access network system signaling messages indicating non-zero valued buffer status reports for the transmit on frames and zero valued buffer status reports for the transmit off frames. Non-zero values correspond to actual amounts of pending uplink data, while zero values are sent irrespective of actual uplink buffer status.
Abstract:
A wireless communication device (UE) may conduct wireless communications using one or more antennas according to multiple radio access technologies (RAT) associated with corresponding operating frequency bands. The UE may perform adaptive antenna tuning, for example, application-based antenna tuning for increasing the operating efficiency of the UE, which may improve user experience. The UE may periodically identify one or more applications running on the UE, the respective RATs that support the (running) applications, and which of the corresponding frequency bands are used by the (running) applications. The UE may determine the tuner device settings for tuning the one or more antenna(s) based on the (running) applications or the type and/or priority of the (running) applications, which RATs support the running applications, which of the corresponding frequency bands are used by the (running) applications, and operating conditions associated with the frequency bands used by the (running) applications.
Abstract:
A wireless communication device (UE) may conduct wireless communications using one or more antennas according to multiple radio access technologies (RAT) associated with corresponding operating frequency bands. The UE may perform adaptive antenna tuning, for example, application-based antenna tuning for increasing the operating efficiency of the UE, which may improve user experience. The UE may periodically identify one or more applications running on the UE, the respective RATs that support the (running) applications, and which of the corresponding frequency bands are used by the (running) applications. The UE may determine the tuner device settings for tuning the one or more antenna(s) based on the (running) applications or the type and/or priority of the (running) applications, which RATs support the running applications, which of the corresponding frequency bands are used by the (running) applications, and operating conditions associated with the frequency bands used by the (running) applications.
Abstract:
A device and method selects an antenna configuration. The method performed at a user equipment includes determining at least one communication functionality that is being used, each communication functionality configured to utilize at least one antenna in a multi-antenna arrangement of the user equipment. The method includes receiving a first indication of whether a cellular communication functionality is being used, the cellular communication functionality configured to utilize at least one antenna in the multi-antenna arrangement. The method includes receiving a second indication of whether a coexistence condition is present. The method includes determining an antenna configuration for the multi-antenna arrangement to be used by the determined communication functionality based upon the determined communication functionality, the first indication, and the second indication. The method includes configuring the multi-antenna arrangement for the determined communication functionality based upon the antenna configuration.
Abstract:
The disclosed embodiments provide a system that uses a first antenna and a second antenna in a portable electronic device. During operation, the system receives a request to switch from the first antenna to the second antenna to transmit a signal to a cellular receiver. Next, the system loads a set of radio-frequency (RF) calibration values for the second antenna. Finally, the system performs the switch from the first antenna to the second antenna to transmit the signal, wherein the second antenna is operated using the RF calibration values after the switch.
Abstract:
Embodiments described herein relate to an apparatus, system, and method for controlling access to multiple antennas in a mobile device. The mobile device may determine priority among a first protocol stack associated with a first subscriber identity module (SIM) in the mobile device and a second protocol stack associated with a second SIM in the mobile device. The mobile device may lock control of a position of a switch to the first protocol stack based on determining the priority among the first protocol stack and the second protocol stack. The switch may control access to the multiple antennas. Accordingly, the second protocol stack may be unable to modify the position of the switch when control of the switch is locked to the first protocol stack.
Abstract:
The disclosed embodiments provide a system that uses a first antenna and a second antenna in a portable electronic device. During operation, the system receives a request to switch from the first antenna to the second antenna to transmit a signal to a cellular receiver. Next, the system loads a set of radio-frequency (RF) calibration values for the second antenna. Finally, the system performs the switch from the first antenna to the second antenna to transmit the signal, wherein the second antenna is operated using the RF calibration values after the switch.
Abstract:
Apparatus and methods for the design and dynamic tuning of antenna circuitry for use across multiple radio frequency bands in wireless communication devices is disclosed herein. An antenna apparatus includes antenna tuning control, antenna tuning circuitry, and a set of one or more physical antennas. The antenna tuning controller includes a combination of baseband and front-end hardware and software. The antenna circuitry collectively includes antenna tuning circuitry and the set of one or more physical antennas. Based on a set of radio frequency bands and on communication channel conditions, the antenna tuning controller determines an optimal antenna tuning configuration and provides appropriate parameters to the antenna tuning circuitry. The antenna apparatus configures and optimizes the tuning of the antenna circuitry for a future time period, which can be a next time slot. The antenna tuning controller utilizes a cost/gain function to calculate the optimal antenna tuning configuration.
Abstract:
Methods, apparatuses and computer readable media are described that manage transmit power levels for a wireless device connected to a network access system of a wireless network. Processing circuitry in the wireless device obtains a target average transmit power level. Based on estimates of an actual average transmit power level for a sliding window of a past time period and the target average transmit power level, the processing circuitry determines a target transmit power level, a duty cycle percentage, and a transmit pattern of transmit on frames and transmit off frames for a future time period. The processing circuitry sends to the access network system signaling messages indicating non-zero valued buffer status reports for the transmit on frames and zero valued buffer status reports for the transmit off frames. Non-zero values correspond to actual amounts of pending uplink data, while zero values are sent irrespective of actual uplink buffer status.
Abstract:
Apparatus and methods for the design and dynamic tuning of antenna circuitry for use across multiple radio frequency bands in wireless communication devices is disclosed herein. An antenna apparatus includes antenna tuning control, antenna tuning circuitry, and a set of one or more physical antennas. The antenna tuning controller includes a combination of baseband and front-end hardware and software. The antenna circuitry collectively includes antenna tuning circuitry and the set of one or more physical antennas. Based on a set of radio frequency bands and on communication channel conditions, the antenna tuning controller determines an optimal antenna tuning configuration and provides appropriate parameters to the antenna tuning circuitry. The antenna apparatus configures and optimizes the tuning of the antenna circuitry for a future time period, which can be a next time slot. The antenna tuning controller utilizes a cost/gain function to calculate the optimal antenna tuning configuration.