Abstract:
Devices and systems useful in concurrently receiving and transmitting Wi-Fi signals and Bluetooth signals in the same frequency band are provided. By way of example, an electronic device includes a transceiver configured to transmit data and to receive data over channels of a first wireless network and a second wireless network concurrently. The transceiver includes a plurality of filters configured to allow the transceiver to transmit the data and to receive the data in the same frequency band by reducing interference between signals of the first wireless network and the second wireless network.
Abstract:
Devices and systems useful in concurrently receiving and transmitting Wi-Fi signals and Bluetooth signals in the same frequency band are provided. By way of example, an electronic device includes a transceiver configured to transmit data and to receive data over channels of a first wireless network and a second wireless network concurrently. The transceiver includes a plurality of filters configured to allow the transceiver to transmit the data and to receive the data in the same frequency band by reducing interference between signals of the first wireless network and the second wireless network.
Abstract:
Devices and systems useful in concurrently receiving and transmitting Wi-Fi signals and Bluetooth signals in the same frequency band are provided. By way of example, an electronic device includes a transceiver configured to transmit data and to receive data over channels of a first wireless network and a second wireless network concurrently. The transceiver includes a plurality of filters configured to allow the transceiver to transmit the data and to receive the data in the same frequency band by reducing interference between signals of the first wireless network and the second wireless network.
Abstract:
The present techniques relate to reducing interference on conducted RF links by utilizing country information to determine where an electronic device is located, and using such information to select sub-bands or channels that are not available for wireless transmission to be used for transmission of signals via the conducted RF links. Because the conducted RF links operate on frequency bands that are different from the frequency bands used for wireless communications in a given country, there is less likelihood that wireless communications will create interference in the signals being transmitted via the conducted RF links.
Abstract:
A technique for reducing interference on conducted RF links involves a determination of active wireless channels in an electronic device. For example, the device can determine whether there are any active cellular, WiFi, and/or Bluetooth channels. If so, any active channels can be removed from a list of possible channels that can be used for generating the RF signals for the conducted RF link. If any idle channels remain available, one or more may be selected for use for the conducted RF link. Those idle channels having a higher offset from any active channels may be given a greater weight in the selection since they should be less likely to be subject to interference. If not, one of the least crowded active channels may be selected for use for the conducted RF link.
Abstract:
The present disclosure relates to systems and methods for operating a control signal to communicate signals using a first antenna and a first frequency band in response to determining that intra-device operations are occurring or are expected to occur, that a first amount of energy received by the first antenna is less than a threshold amount of energy, and that the first antenna is unaffected by the intra-device operations. The control signal may also delay communication of the signals in response to determining that intra-device operations are occurring, and that first amount of energy is greater than or equal to the threshold amount of energy.
Abstract:
A technique for reducing interference on conducted RF links involves a determination of active wireless channels in an electronic device. For example, the device can determine whether there are any active cellular, WiFi, and/or Bluetooth channels. If so, any active channels can be removed from a list of possible channels that can be used for generating the RF signals for the conducted RF link. If any idle channels remain available, one or more may be selected for use for the conducted RF link. Those idle channels having a higher offset from any active channels may be given a greater weight in the selection since they should be less likely to be subject to interference. If not, one of the least crowded active channels may be selected for use for the conducted RF link.
Abstract:
Resource allocation logic in a user device can determine allocation of a shared resource among different communication modules supporting a number of different communication types (e.g., GNSS, cellular, Wi-Fi, and/or Bluetooth communications) in a context-dependent manner. For example, the logic can determine an operating context of the user device. Based on the operating context, the logic can assign a priority to each of the signal types. The shared resource can be allocated among the signal types based on the priority.
Abstract:
Devices and systems useful in concurrently receiving and transmitting Wi-Fi signals and Bluetooth signals in the same frequency band are provided. By way of example, an electronic device includes a transceiver configured to transmit data and to receive data over channels of a first wireless network and a second wireless network concurrently. The transceiver includes a plurality of filters configured to allow the transceiver to transmit the data and to receive the data in the same frequency band by reducing interference between signals of the first wireless network and the second wireless network.
Abstract:
In order to establish a connection between electronic devices, after receiving an advertising packet from another electronic device, an electronic device compares a performance metric associated with the communication with the other electronic device with a threshold value. Based on the comparison, the electronic device provides pairing-intent information specifying a pairing intent for the electronic device and the other electronic device for presentation by the other electronic device. Moreover, after receiving additional pairing-intent information specifying the pairing intent from the other electronic device, the electronic device establishes the connection with the other electronic device when the additional pairing-intent information matches the pairing-intent information. For example, the pairing intent may include a gesture and/or a sequence of one or more characters, and the additional pairing-intent information may include: the sequence of one or more characters; accelerometer data corresponding to the gesture; and/or user-interface data corresponding to the gesture.