Abstract:
An inductive charging system and method is disclosed. A ferrofluid layer is disposed between the charging coil and the receiving coil. The ferrofluid layer directs and focuses the magnetic flux field flowing between the charging coil and the receiving coil.
Abstract:
An electronic device with seamless protective cover glass is disclosed. In the described embodiments, the cover glass is coupled to the housing such that the cover glass or portions of the cover glass move with respect to the housing. This movement can be used as an interface for receiving user inputs that can be used to provide control signals to the electronic device.
Abstract:
Embodiments can provide reversible or dual orientation USB plug connectors for mating with standard USB receptacle connectors, e.g., a standard Type A USB receptacle connector. Accordingly, the present invention may be compatible with any current or future electronic device that includes a standard USB receptacle connector. USB plug connectors according to the present invention can have a 180 degree symmetrical, double orientation design, which enables the plug connector to be inserted into a corresponding receptacle connector in either of two intuitive orientations. Thus, embodiments of the present invention may reduce the potential for USB connector damage and user frustration during the incorrect insertion of a USB plug connector into a corresponding USB receptacle connector of an electronic device. Reversible USB plug connectors according to the present invention may include a compliant member or structural support for distributing stress and increasing contact normal force at the tongue of the reversible USB plug connector.
Abstract:
An electronic device has a housing in which components are installed. The components contain audio components having audio ports and terminals. Elastomeric material is molded over the surface of an audio component so that the leads attached to the terminals protrude through the elastomeric material. The protruding portions of the leads are bent back to lie flush with the surface of the elastomeric material. The elastomeric material are configured to form elastomeric structures with an opening that is aligned with the audio port in a component. The housing of an electronic device has one or more openings that form an audio port. The opening in the elastomeric structures that are molded onto the audio component is aligned with the audio port in the housing and the audio port in the audio component. Mesh structures cover the audio port in the housing.
Abstract:
Methods and systems for automatically aligning a power-transmitting inductor with a power-receiving inductor. One embodiment includes multiple permanent magnets coupled to and arranged on a surface of a movable assembly accommodating a power-transmitting inductor. The permanent magnets encourage the movable assembly to freely move and/or rotate via magnetic attraction to correspondingly arranged magnets within an accessory containing a power-receiving inductor.
Abstract:
An electronic device may be provided with a touch screen display. The touch screen display may have an array of display pixels that are used to display images for a user. Touch input to the touch screen display may be provided by a user's finger or other external object. A touch sensor in the display may have vertical and horizontal position sensors that are based on distinct touch sensor technologies. The position sensors may be based on strain gauge sensors or other force sensors, capacitive sensors having multiple elongated transparent capacitive electrodes that span the display, acoustic sensors, light-based sensors, and other types of sensors. An opaque masking layer in an inactive area of the display may hide some of the position sensor structures from view such as vertical position sensor structures. The horizontal position sensor structures may have minimal inactive regions along their edges.
Abstract:
Protection structures may be provided to protect connectors, printed circuits, and other internal device components from damage. Components may shift within a device if the device is unexpectedly dropped. Protection structures can shield printed circuit connectors and other structures so that component movement during a drop event does not dislodge a printed circuit connector or otherwise damage a device. A cowling can be used to hold a board-to-board connector or other connector together. The cowling may have a protruding portion that is bent to form a protective wall. Plastic structures may be molded onto the cowling to form protective walls. Protection structures for printed circuit connectors and other internal device components may be formed from spring-based structures that clip onto the edge of a printed circuit board.
Abstract:
An electronic device may be provided with a touch screen display. The touch screen display may have an array of display pixels that are used to display images for a user. Touch input to the touch screen display may be provided by a user's finger or other external object. A touch sensor in the display may have vertical and horizontal position sensors that are based on distinct touch sensor technologies. The position sensors may be based on strain gauge sensors or other force sensors, capacitive sensors having multiple elongated transparent capacitive electrodes that span the display, acoustic sensors, light-based sensors, and other types of sensors. An opaque masking layer in an inactive area of the display may hide some of the position sensor structures from view such as vertical position sensor structures. The horizontal position sensor structures may have minimal inactive regions along their edges.
Abstract:
A connector or other structure may be provided with dielectric material and conductive traces. The dielectric material may include plastic structures such as molded plastic members. Elastomeric material may allow part of a connector to flex when the connector is mated with a corresponding connector. Printed circuits may be used to mount electrical components. Conductive traces may be formed on plastic structures such as molded plastic structures, on elastomeric members, on printed circuits, and on other structures. The conductive structures may form signal interconnects, ground plane structures, contacts, and other signal paths. The conductive traces may be formed from metal and other conductive materials such as graphene. Graphene may be deposited using inkjet printing techniques or other techniques. During inkjet printing, graphene may be patterned to form signal lines, connector contacts, ground planes, and other structures.
Abstract:
An improved method is employed to produce a plug connector having a defined breaking strength. The plug connector is receivable in a receptacle connector disposed in an electronic device. The plug connector has an inner enclosure bonded to a tab of the connector. The bonds are designed to break at a torque that is less than the breaking strength of the tab of the connector and/or the receptacle connector. The designed breaking strength protects the receptacle connector and/or the electronic device from damage when a force is applied to the plug connector.