Abstract:
A testing device for testing one more characteristics of an electronic display. The testing device includes a main body and a receiving cavity defined within the main body configured to receive at least a portion of the electronic display. The testing device also includes a plurality of sensors positioned on a first surface of the testing device and configured to be in optical communication with at least a portion of the electronic display received within the cavity. The plurality of sensors is configured to detect at least one type of non-uniformity of the electronic display by detecting light emitted from the electronic display.
Abstract:
A directional light sensor may be provided having an array of beam steering elements and an array of corresponding light sensors. Each beam steering element may be configured to direct light from a given angle onto a particular light sensor so that the angular distribution of light may be mapped onto a planar grid of light sensors. Each beam steering element may be formed using holographic, refractive, diffusive or other structures for redirecting a beam of light. An electronic device may be provided having a directional light sensor. The directional light sensor in the electronic device may provide ambient light data or user input data to the electronic device. A test system may be provided having a directional light sensor for gathering ambient light data during testing and manufacturing of an electronic device.
Abstract:
An optical test equipment/method for display testing that features parallel testing/sensing configuration that covers spectrum and colorimetric quantities with spatial resolution is disclosed. In one embodiment, a spectra-camera, which is a hybrid system consisting of both a single-point spectrometer and an imaging colorimeter, can be configured for concurrent display artifact and parametric testing. An aperture mirror with a hole in the middle splits an image of a test display into two parts. One part of the image passes through the hole and is directed to the spectrometer for display parametric testing. The rest of the image is reflected off the aperture mirror for concurrent display artifact testing with the colorimeter. In another embodiment, a beam splitter can be used instead of an aperture mirror. In yet another embodiment, the single-point high accuracy spectrometer can be used to calibrate the low accuracy imaging colorimeter.
Abstract:
This specification describes various embodiments that relate to methods for providing a wideband colorimeter that can include more accurate outputs. In one embodiment, a narrowband instrument, such as a spectrometer or spectrograph, can be used for calibration of a wideband colorimeter, so that more accurate outputs can be provided. In one embodiment, an optical test equipment, which consists of both a wideband colorimeter and a narrowband spectrograph, can be used for providing a more accurately calibrated wideband colorimeter. As an example, a spectra-camera, which is a hybrid system consisting of both a wideband colorimeter and a narrowband spectrograph, can be used for simultaneous testing by both the wideband colorimeter and the narrowband spectrograph. By doing simultaneous testing, accurate calibration of the wideband colorimeter can be achieved. This specification further describes a mathematical model to characterize a wideband three channel colorimeter with a narrowband multiple channel spectrometer.
Abstract:
This specification describes various embodiments that relate to methods for providing a wideband colorimeter that can include more accurate outputs. In one embodiment, a narrowband instrument, such as a spectrometer or spectrograph, can be used for calibration of a wideband colorimeter, so that more accurate outputs can be provided. In one embodiment, an optical test equipment, which consists of both a wideband colorimeter and a narrowband spectrograph, can be used for providing a more accurately calibrated wideband colorimeter. As an example, a spectra-camera, which is a hybrid system consisting of both a wideband colorimeter and a narrowband spectrograph, can be used for simultaneous testing by both the wideband colorimeter and the narrowband spectrograph. By doing simultaneous testing, accurate calibration of the wideband colorimeter can be achieved. This specification further describes a mathematical model to characterize a wideband three channel colorimeter with a narrowband multiple channel spectrometer.
Abstract:
A testing device for testing one more characteristics of an electronic display. The testing device includes a main body and a receiving cavity defined within the main body configured to receive at least a portion of the electronic display. The testing device also includes a plurality of sensors positioned on a first surface of the testing device and configured to be in optical communication with at least a portion of the electronic display received within the cavity. The plurality of sensors is configured to detect at least one type of non-uniformity of the electronic display by detecting light emitted from the electronic display.
Abstract:
A spectro-colorimeter system for imaging pipeline is provided, the system including a camera system; a spectrometer system; and a controller coupling the camera system and the spectrometer system. In some embodiments the camera system is configured to provide a color image with the first portion of the incident light. Also, in some embodiments the spectrometer system is configured to provide a tristimulus signal from the second portion of the incident light. Furthermore, in some embodiments the controller is configured to correct the color image from the camera system using the tristimulus signal from the spectrometer. An imaging pipeline method for using a system as above is also provided. Further, a method for color selection in an imaging pipeline calibration is provided.
Abstract:
A directional light sensor may be provided having an array of beam steering elements and an array of corresponding light sensors. Each beam steering element may be configured to direct light from a given angle onto a particular light sensor so that the angular distribution of light may be mapped onto a planar grid of light sensors. Each beam steering element may be formed using holographic, refractive, diffusive or other structures for redirecting a beam of light. An electronic device may be provided having a directional light sensor. The directional light sensor in the electronic device may provide ambient light data or user input data to the electronic device. A test system may be provided having a directional light sensor for gathering ambient light data during testing and manufacturing of an electronic device.