Abstract:
Ion implantation systems and processes are disclosed. An exemplary ion implantation system may include an ion source, an extraction manipulator, a magnetic analyzer, and an electrode assembly. The extraction manipulator may be configured to generate an ion beam by extracting ions from the ion source. A cross-section of the generated ion beam may have a long dimension and a short dimension orthogonal to the long dimension of the ion beam. The magnetic analyzer may be configured to focus the ion beam in an x-direction parallel to the short dimension of the ion beam. The electrode assembly may be configured to accelerate or decelerate the ion beam. One or more entrance electrodes of the electrode assembly may define a first opening and the electrode assembly may be positioned relative to the magnetic analyzer such that the ion beam converges in the x-direction as the ion beam enters through the first opening.
Abstract:
A deceleration apparatus capable of decelerating a short spot beam or a tall ribbon beam is disclosed. In either case, effects tending to degrade the shape of the beam profile are controlled. Caps to shield the ion beam from external potentials are provided. Electrodes whose position and potentials are adjustable are provided, on opposite sides of the beam, to ensure that the shape of the decelerating and deflecting electric fields does not significantly deviate from the optimum shape, even in the presence of the significant space-charge of high current low-energy beams of heavy ions.
Abstract:
An electrode assembly for accelerating or decelerating an ion beam is provided. In one example, the electrode assembly may include a pair of exit electrodes adjacent to an exit opening of the electrode assembly. The pair of exit electrodes may be positioned on opposite sides of a first plane aligned with a first dimension of the exit opening. A pair of pierce electrodes may be adjacent to the pair of exit electrodes. The pair of pierce electrodes may be positioned on opposite sides of a second plane aligned with a second dimension of the exit opening. The second dimension of the exit opening may be perpendicular to the first dimension of the exit opening. Each pierce electrode may include an angled surface positioned such that a dimension of the angled surface forms an angle of between 40 and 80 degrees with respect to the second plane.