Abstract:
In a microbial fermentation, the aim is to increase the product yield of protein. This is achieved by a method in which an expression construct is introduced into a microorganism of the species Bacillus pumilus which comprises a promoter and a nucleic acid coding for the protein, and the protein is expressed in said expression construct.
Abstract:
The aim of the invention is to improve the secretion of a protein from a host cell in order to increase the product yield of protein in a fermentation process. This is achieved by an expression vector comprising a) a promoter sequence and b) a nucleic acid sequence that codes for a protein. The protein comprises a signal peptide and an additional amino acid sequence, and the signal peptide comprises an amino acid sequence that is at least 80% identical to the amino acid sequence specified in SEQ ID NO: 2, at least 80% identical to the amino acid sequence specified in SEQ ID NO: 4, at least 80% identical to the amino acid sequence specified in SEQ ID NO: 6, or the signal peptide comprises an amino acid sequence that is structurally homologous to at least one of said sequences.
Abstract:
The aim of the invention is to improve the secretion of a protein from a host cell in order to increase the product yield of protein in a fermentation process. This is achieved by an expression vector comprising a) a promoter sequence and b) a nucleic acid sequence that codes for a protein. The protein comprises a signal peptide and an additional amino acid sequence, and the signal peptide comprises an amino acid sequence that is at least 80% identical to the amino acid sequence specified in SEQ ID NO 2, at least 80% identical to the amino acid sequence specified in SEQ ID NO 4, at least 80% identical to the amino acid sequence specified in SEQ ID NO 6, or the signal peptide comprises an amino acid sequence that is structurally homologous to at least one of said sequences.
Abstract:
In a microbial fermentation, the aim is to increase the product yield of protein. This is achieved by a method in which an expression construct is introduced into a microorganism of the species Bacillus pumilus which comprises a promoter and a nucleic acid coding for the protein, and the protein is expressed in said expression construct.
Abstract:
The present invention relates to 25 hitherto undescribed genes of B. licheniformis and gene products derived thereform and all sufficiently homologous nucleic acids and proteins thereof. They occur in five different metabolic pathways for the formation of odorous substances. The metabolic pathways in question are for the synthesis of: 1) isovalerian acid (as part of the catabolism of leucine), 2) 2-methylbutyric acid and/or isobutyric acid (as part of the catabolism of valine and/or isoleucine), 3) butanol and/or butyric acid (as part of the metabolism of butyric acid), 4) propyl acid (as part of the metabolism of propionate) and/or 5) cadaverine and/or putrescine (as parts of the catabolism of lysine and/or arginine). The identification of these genes allows biotechnological production methods to be developed that are improved to the extent that, to assist these nucleic acids, the formation of the odorous substances synthesised via these metabolic pathways can be reduced by deactivating the corresponding genes in the micro-organism used for the biotechnological production. In addition, these gene products are thus available for preparing reactions or for methods according to their respective biochemical properties.
Abstract:
The aim of the invention is to improve the secretion of a protein from a host cell in order to increase the product yield of protein in a fermentation process. This is achieved by an expression vector comprising a) a promoter sequence and b) a nucleic acid sequence that codes for a protein. The protein comprises a signal peptide and an additional amino acid sequence, and the signal peptide comprises an amino acid sequence that is at least 80% identical to the amino acid sequence specified in SEQ ID NO: 2, at least 80% identical to the amino acid sequence specified in SEQ ID NO: 4, at least 80% identical to the amino acid sequence specified in SEQ ID NO: 6, or the signal peptide comprises an amino acid sequence that is structurally homologous to at least one of said sequences.