Abstract:
Provided is a thin film transistor, which comprises a gate electrode; a source electrode; and a drain electrode, wherein at least one electrode of the gate electrode, the source electrode and the drain electrode has a plurality of first grooves formed on an upper surface thereof. An array substrate, a display panel and a manufacturing method of an array substrate are also provided. In manufacturing the thin film transistor, the pattern is accurate and the yield is high.
Abstract:
An array substrate and manufacturing method thereof, display panel and display device. The manufacturing method of the array substrate includes: forming, on a substrate, a first conductive pattern, a second conductive pattern and an insulating pattern, the insulating pattern at least covering an upper surface of the first conducting pattern, the first conductive pattern including a first amorphous transparent conductive pattern and a first metal pattern, and the second conductive pattern including a second amorphous transparent conductive pattern; and performing an annealing treatment to convert the first amorphous transparent conductive pattern and the second amorphous transparent conductive pattern to a first crystalline transparent conductive pattern and a second crystalline transparent conductive pattern respectively. The method addresses the problem in which a metal surface is readily oxidizable when performing an annealing treatment, thereby improving the product yield.
Abstract:
The invention relates to a method for fabricating an array substrate, an array substrate and a display device. The method for fabricating an array substrate may comprise: forming a pattern including a source electrode, a drain electrode and a data line; forming a non-crystalline semiconductor thin film layer; and performing annealing, so as to convert only the non-crystalline semiconductor thin film layer on the source electrode, drain electrode and data line to a metal semiconductor compound. By converting only the non-crystalline semiconductor thin film layer on the source electrode, drain electrode and data line into a metal semiconductor compound, the resulting metal semiconductor compound may prevent oxidative-corrosion of the metal thin film layer, such as a low-resistance metal (e.g., Cu or Ti) layer, in the subsequent procedures, which is favorable for the fabrication of a metal oxide thin film transistor using Cu or Ti.
Abstract:
An array substrate and a fabrication method thereof, and a display device are provided. The array substrate comprises a gate line and a data line intersecting with each other. The data line and the gate line are formed in a same layer on a substrate, the data line is disconnected in a region of the gate line. A connection pattern is formed in the region of the gate line, the connection pattern is insulated from the gate line, and ends of the data line located on both sides of the gate line are electrically connected by the connection pattern.
Abstract:
An array substrate and a manufacturing method thereof, a liquid crystal display panel and a display device are provided, the array substrate comprises a base substrate, and thin film transistors and pixel electrodes provided on the base substrate, the pixel electrode and the active layer in the thin film transistor are provided in the same layer. The active layer is formed of transparent oxide semiconductor material, and the concentration of carriers in the oxide semiconductor material may be increased by performing a plasma process on the oxide semiconductor material, thus the pixel electrode may be manufactured by using the oxide semiconductor material used for manufacturing the active layer, thereby the pixel electrode and the active layer can be provided in the same layer, the number of the masks can be reduced, the manufacturing process is simplified, production cost is saved, the productivity is increased, and the manufacturing time is shortened.
Abstract:
An array substrate, a manufacturing method thereof and a display device are provided. The array substrate comprises a base substrate (1), an organic light-emitting diode (OLED) device and a thin-film transistor (TFT) structure, the OLED device disposed on one side of the base substrate (1); the TFT structure disposed on the other side of the base substrate (1); a through hole formed on the base substrate and provided with a conductive bridge (2); and the OLED device connected with the TFT structure through the conductive bridge (2). The array substrate can avoid electrical interference of the TFT structure on the OLED device, and hence accurate drive for the OLED device can be achieved; as the OLED device can be directly formed on a surface of the base substrate, surface treatment of a pixel electrode is saved with respect to conventional OLED display device, and hence manufacturing process can be accelerated and manufacturing cost can be reduced; and as both an anode and a cathode of the OLED device are made from transparent materials, double-sided light emission can be achieved in the array substrate, and hence double-sided display can be achieved in the array substrate.
Abstract:
A method for manufacturing the array substrate includes: forming a gate metal layer on a base by a first patterning process and forming a gate insulating layer on the gate metal layer; forming a semiconductor layer and a source/drain metal layer by a second patterning process on the resulted base, the source/drain metal layer including a data line and a metal electrode connected to the data line; forming a first electrode on the resulted base and forming a channel region by a third patterning process, the channel region causing the metal electrode to form a source electrode and a drain electrode; forming a passivation layer and an organic insulating layer by a fourth patterning process on the resulted base; the organic insulating layer at least corresponding to the data line; and forming a second electrode by a fifth patterning process on the resulted base.
Abstract:
A display panel, comprising an array substrate (1) having a plurality of sub pixels (15), wherein the array substrate (1) comprises: a thin film transistor (11), a passivation layer (12) disposed on the thin film transistor, and a color filter layer (13) disposed on the passivation layer, the array substrate further comprises a protection layer (14) which is disposed on the color filter layer (13) and is made of a mixture of metal oxide and resin. In the display panel, the problem that ultraviolet light irradiation onto a thin film transistor affects the transistor performance is solved, the characteristic drift of the thin film transistor is reduced, and the on-off ratio of the thin film transistor is increased, thereby the performance of the thin film transistor is improved. The manufacturing method of the display panel and a display apparatus comprising the display panel are also disclosed.
Abstract:
An array substrate and a manufacturing method thereof, a display device and a thin film transistor are provided. The method includes forming a pattern that includes an active layer, a pixel electrode and a data line on a base substrate; forming a pattern that includes a gate insulating layer and at least two gate via-holes therein, the at least two gate via-holes are located in regions in the gate insulating layer that correspond to outer surroundings of the active layer and do not overlap with areas where the pixel electrode and the data line are located; forming a pattern that includes a gate line and at least two gate electrodes, the at least two gate electrodes are connected to the gate line, and are provided in the at least two gate via-holes, respectively. With this method, the fabricating process and the fabricating cost are saved.
Abstract:
An array substrate and a manufacturing method thereof and a display device are provided, and the array substrate comprises: a substrate (1); a thin film transistor, a passivation layer (5) and a transparent electrode (6), sequentially formed on the substrate, wherein a groove (51) is formed in an upper surface of the passivation layer (5), and the transparent electrode (6) is provided in the groove (51).