Abstract:
The present disclosure provides a metal resin composite. The metal resin composite includes a metal substrate. The upper surface of the metal substrate is provided with at least one upper surface slit, the lower surface of the metal substrate is provided with at least one lower surface groove in a position corresponding to the upper surface slit, and the upper surface slit is connected with the lower surface groove. A first injection molding resin is formed in the upper surface slit by injection molding, and a second injection molding resin is formed in the lower surface groove by injection molding. The present disclosure also provides a preparation method of the metal resin composite, a personal electronic device shell including the metal resin composite, a personal electronic device, and a metal resin composite processing component.
Abstract:
A method of preparing aluminum alloy-resin composite and an aluminum alloy-resin composite obtained by the same are provided. of the method comprises: S1: anodizing a surface of an aluminum alloy substrate to form an oxide layer on the surface, the oxide layer including nanopores; S2: immersing the resulting aluminum alloy substrate obtained in step S1 in a buffer solution having a pH of about 10 to about 13, to form a corrosion pores on an outer surface of the oxide layer; and S3: injection molding a resin onto the surface of the resulting aluminum alloy substrate obtained in step S2 in a mold to obtain the aluminum alloy-resin composite.
Abstract:
The present disclosure relates to the field of electronic communications, and discloses a housing, a preparation method therefor, and use thereof. The housing includes a metal anodic oxide layer (5) and a resin film layer (3) adhering to a first surface of the metal anodic oxide layer (5). The metal anodic oxide layer (5) and the resin film layer (3) form an integrated structure. The preparation method includes: performing anode oxidization treatment on a metal substrate (1), and then successively performing injection molding and etching.
Abstract:
A shell, a method of preparing the shell and an electronic product comprising the shell are provided. The shell may comprise: a metal shell body, a plastic part made of a resin, and an oxide layer formed between the metal body and the plastic part, joining the plastic part to the metal shell body, wherein the oxide layer contains corrosion pores having an average diameter of about 200 nm to about 2000 nm in the surface contacting the plastic part, and nanopores having a diameter of about 10 to 100 nm in the surface contacting the metal shell body, and a part of the resin is filled in the corrosion pore and corrosion pore.
Abstract:
A method of making an aluminum alloy-resin composite and an aluminum alloy-resin composite obtained by the same are provided. The method may comprise: S1: anodizing a surface of an aluminum alloy substrate to form an oxide layer on the surface, in which the oxide layer includes nanopores; S2: immersing the resulting aluminum alloy substrate obtained at step S1 in an alkaline solution having a pH of about 10 to about 13, to form corrosion pores on an outer surface of the oxide layer, wherein the alkaline solution is an aqueous solution including at least one selected from a soluble carbonates, a soluble alkali, a soluble phosphate, a soluble sulfate, and a soluble borate; S3: injection molding a resin onto the surface of the resulting aluminum alloy substrate in step S2 in a mold to obtain the aluminum alloy-resin composite.
Abstract:
The present disclosure relates to the field of electronic communications, and discloses a housing, a preparation method therefor, and use thereof. The housing includes a metal hard anodic oxide layer (5) and a resin film layer (3) adhering to a first surface of the metal hard anodic oxide layer (5). The metal hard anodic oxide layer (5) and the resin film layer (3) form an integrated structure. The preparation method includes: performing hard anode oxidization treatment on a metal substrate (1), and then successively performing injection molding and etching.
Abstract:
An aluminum alloy, an aluminum alloy resin composite, a method of preparing aluminum alloy, and a method of preparing aluminum alloy-resin composite are provided. The aluminum alloy may comprise: an aluminum alloy substrate; and an oxide layer formed on the surface of the aluminum alloy substrate. The oxide layer comprises an outer surface and an inner surface. The outer surface contains corrosion pores having an average diameter of about 200 nm to about 2000 nm; and the inner surface contains nanopores having an average diameter of about 10 nm to about 100 nm.
Abstract:
A method of preparing an aluminum alloy resin composite comprises: providing an aluminum alloy substrate having an oxide layer on a surface thereof, wherein the oxide layer has one or more nanopores; forming one or more corrosion pores on an outer surface of the oxide layer by using a corrosion agent, wherein the corrosion agent is at least one selected from a group of ammonia, ammonium salt, hydrazine, hydrazine derivative, and water-soluble amine compound; and injection molding a resin composition to the surface of the aluminum alloy substrate.