Abstract:
A battery includes a shell, a core received in the shell and having first and second electrode tabs, and first and second protection components. Each of the first and second protection components includes two insulating layers and a conducting layer disposed between two insulating layers. The conducting layer of the first protection component defines a first end electrically connected to the first electrode tab and a second end configured as a free end. The conducting layer of the second protection component defines a first end electrically connected to the second electrode tab and a second end configured as a free end.
Abstract:
An electrochemical storage cell is disclosed that comprises a core and a rectangular shell that receives the core snugly therein. The rectangular shell has first and second open ends. A first end cap is used to close the first open end. An anode terminal extends through the first end cap from an interior portion of the electrochemical storage cell to an external portion thereof. A first gasket is secured within the rectangular shell between the first end cap and the core to resiliently hold the core away from the first end cap. A second end cap is used to close the second open end. A cathode terminal extends through the second end cap from an interior portion of the electrochemical storage cell to an external portion thereof. A second gasket is secured within the rectangular shell between the second end cap and the core to resiliently hold the core away from the second end cap.
Abstract:
A battery unit includes a battery and an insulation film, the battery includes a battery housing, a battery core disposed inside the battery housing, and a battery cover plate disposed on an end portion of the battery housing; the insulation film is coated on at least one side face of the battery housing, the insulation films on two adjacent battery units are bonded to each other in the preset direction to connect the plurality of battery units together; and the insulation film includes an extension portion, where the extension portion is formed by a top portion of the insulation film which protrudes from the battery cover plate and extends upward, the top plate is disposed on an upper side of the battery unit, a groove is provided on a lower side of the top panel, and at least part of the extension portion is accommodated in the groove.
Abstract:
The present disclosure provides an automobile tray component, including a tray base plate and mounting beams arranged around the tray base plate, where the tray base plate includes an upper plate body, an intermediate plate body, and a lower plate body, a cooling cavity is arranged between the upper plate body and the intermediate plate body, and a buffer cavity is arranged between the intermediate plate body and the lower plate body.
Abstract:
Embodiments of the present disclosure provide a battery heating system, a battery assembly and an electric vehicle. The battery heating system includes: a battery group having a positive terminal and a negative terminal; a switch having a first end connected with the positive terminal; a large-current discharge module, and a controller connected to the switch and configured to control the switch according to a temperature of the battery group. A first end of the large-current discharge module is connected to a second end of the switch, and a second end of the large-current discharge module is connected to the negative terminal. When the switch is turned on, the battery group discharges via the large-current discharge module and the battery group is heated due to an internal resistance thereof.
Abstract:
A battery includes a shell, a core and a protection component received in the shell. The core includes a first electrode tab connected to a first current collector and a second electrode tab connected to a second current collector of the core. The protection component includes two insulating layers and a conducting layer disposed between two insulating layers. The conducting layer defines a first end electrically connected to the first electrode tab and a second end configured as a free end, and an outmost current collector of the core is configured by the second current collector.
Abstract:
A battery includes a shell, a core received in the shell and having first and second electrode tabs, and first and second protection components. Each of the first and second protection components includes two insulating layers and a conducting layer disposed between two insulating layers. The conducting layer of the first protection component defines a first end electrically connected to the first electrode tab and a second end configured as a free end. The conducting layer of the second protection component defines a first end electrically connected to the second electrode tab and a second end configured as a free end.
Abstract:
An electrochemical storage cell is disclosed that comprises a core and a rectangular shell that receives the core snugly therein. The rectangular shell has first and second open ends. A first end cap is used to close the first open end. An anode terminal extends through the first end cap from an interior portion of the electrochemical storage cell to an external portion thereof. A first gasket is secured within the rectangular shell between the first end cap and the core to resiliently hold the core away from the first end cap. A second end cap is used to close the second open end. A cathode terminal extends through the second end cap from an interior portion of the electrochemical storage cell to an external portion thereof. A second gasket is secured within the rectangular shell between the second end cap and the core to resiliently hold the core away from the second end cap.
Abstract:
An electrochemical storage cell is disclosed that comprises a core and a rectangular shell that receives the core snugly therein. The rectangular shell has first and second open ends. A first end cap is used to close the first open end. An anode terminal extends through the first end cap from an interior portion of the electrochemical storage cell to an external portion thereof. A first gasket is secured within the rectangular shell between the first end cap and the core to resiliently hold the core away from the first end cap. A second end cap is used to close the second open end. A cathode terminal extends through the second end cap from an interior portion of the electrochemical storage cell to an external portion thereof. A second gasket is secured within the rectangular shell between the second end cap and the core to resiliently hold the core away from the second end cap.
Abstract:
A battery cover assembly includes a cover plate, an electrode inner terminal and an electrode outer terminal. The electrode inner terminal is electrically connected to the electrode outer terminal through a current interrupt structure disposed on the cover plate. The current interrupt structure includes a sealed chamber configured to fill a gas-producing medium therein. The sealed chamber is configured to make the gas-producing medium to be electrically connected to positive electrodes and negative electrodes of a battery. When a voltage difference between the positive electrodes and negative electrodes of the battery exceeds a rated value, the gas-producing medium is capable of producing gas, to disrupt the electrical connection between the electrode inner terminal and the electrode outer terminal under the action of the pressure of the gas.