Abstract:
A system is configured to apply a voltage, charge, and/or an electric field to a combustion reaction responsive to acoustic feedback from the combustion reaction.
Abstract:
A system is configured to apply a voltage, charge, and/or an electric field to a combustion reaction responsive to acoustic feedback from the combustion reaction.
Abstract:
According to embodiments, a co-fired or multiple fuel combustion system is configured to apply an electric field to a combustion region corresponding to a second fuel that normally suffers from poor combustion and/or high sooting. Application of an AC voltage to the combustion region was found to increase the extent of combustion and significantly reduce soot evolved from the second fuel.
Abstract:
An inertial electrode launcher may be configured to project charged particles or a voltage comprising an inertial electrode proximate a flame or combustion gas produced by the flame.
Abstract:
An apparatus for treating a combustion product stream includes a burner assembly configured to support one or more flames, the burner assembly having at least a portion configured to be driven to or held at one or more first voltages. A collection surface is held at a voltage different than the one or more first voltages to attract particulates charged by the burner assembly.
Abstract:
A charge electrode configured to impart a time-varying charge to a flame and a shape electrode located outside the flame may be driven synchronously by a voltage source through time varying voltage(s). The flame may be flattened or compressed responsive to an electric field produced by the shape electrode acting on the charges imparted to the flame.
Abstract:
A solid fuel burner may include a system for electrodynamic homogenization. One or more electrodes may apply an electric field to burning solid fuel or a region proximate the burning solid fuel. The electric field causes mixing and homogenization of volatilized fractions of the solid fuel, combustion gases, and air. The improved mixing and homogenization may reduce emission of carbon monoxide (CO), reduce emission of oxides of nitrogen (NOx), reduce oxygen in flue gas, increase temperature of flue gas, and/or allow for a larger grate surface.
Abstract:
A selective catalytic reduction system (SCR) or selective non-catalytic reduction (SNCR) system include a reagent charging apparatus configured to apply one or more electrical charges to a NOx reducing reagent. The electrical charges enhance mixing of the reagent with fluids carrying NOx and/or enhance reactivity of the reagent with NOx.
Abstract:
Combustion control electrode assemblies, combustion control systems using such assemblies, and methods of manufacturing and using such assemblies are disclosed. The electrode assemblies may include one or more electrodes including a sintered refractory metal material for heat and/or wear resistance. In an embodiment, an electrode assembly for a combustion control system may include at least one substrate and at least one electrode formed on the at least one substrate. The at least one electrode may include a sintered refractory metal material. The at least one electrode may be configured to be mounted proximate to or contacting a flame. The electrode assembly may further include at least one voltage source operatively coupled to the at least one electrode. The at least one electrode and the at least one voltage source may be collectively configured to apply an electric field to one or more regions at least proximate to the flame.
Abstract:
Gaseous particles or gas-entrained particles may be conveyed by electric fields acting on charged species included in the gaseous or gas-entrained particles.