Abstract:
This disclosure generally relates to perforated filter media and coalescing filter elements utilizing perforated filter media. One example coalescing filter element is structured to separate a dispersed phase from a continuous phase of a mixture. The filter media includes a first coalescing layer. The first coalescing layer includes a first filter media. The first filter media has a plurality of pores and a first perforation. Each of the plurality of pores is smaller than the first perforation. The first perforation is formed in the first filter media and extends through the first filter media. The plurality of pores are structured to capture a portion of the dispersed phase. The first perforation is structured to facilitate the transmission of coalesced drops of the dispersed phase through the first coalescing layer such that the coalesced drops of the dispersed phase are separated from the portion of the dispersed phase captured in the first coalescing layer.
Abstract:
Disclosed is a composite filter media. The composite filter media is formed from multiple layers of media material including a nanofiber media layer, where the layers are laminated, bound, or otherwise composited to each other. The composite filter media can comprise at least one nanofiber layer comprising polymeric media material having a geometric mean fiber diameter of about 100 nm to 1 μm, and fibers configured in a gradient such that ratio of the geometric mean diameter of fibers at the upstream face of the nano fiber layer to the geometric mean diameter of fibers at the downstream face of the nano fiber layer is about 1.1 to 2.8, preferably about 1.2 to 2.4.
Abstract:
A fuel filter system that does not require the periodic draining of a water sump. The system includes a fuel tank for storing fuel and a fuel filter fluidly coupled to the fuel tank for separating water from the fuel. A fuel pump has a suction side and a high pressure side. The high pressure side of the fuel pump is fluidly coupled to the fuel filter for pumping fuel to the fuel filter. A water emulsifier, such as an orifice, is fluidly coupled to the fuel filter to receive water and fuel from the fuel filter and form a water-fuel emulsion. The water-fuel emulsion is supplied to any point in the system on the suction side of the fuel pump, such that the water-fuel emulsion passes through the fuel pump and fuel filter.
Abstract:
A fuel water separator comprises a housing that defines an internal volume that receives a mixture. The fuel water separator further comprises a filter element that is positioned within the internal volume. The filter element comprises a first endplate and a second endplate that is located opposite the first endplate. The filter element further comprises a filter media that is coupled to the first endplate and the second endplate. The filter media is structured to separate a dispersed phase from a continuous phase of the mixture. The filter element further comprises a collection sump that is located below the first and second endplate and structured to receive the dispersed phase. The filter element further comprises a retention barrier disposed above the collection sump. The retention barrier comprises a drain opening structured to discharge the dispersed phase through the retention barrier into the collection sump.
Abstract:
A fuel water separator comprises a housing that defines an internal volume that receives a mixture. The fuel water separator further comprises a filter element that is positioned within the internal volume. The filter element comprises a first endplate and a second endplate that is located opposite the first endplate. The filter element further comprises a filter media that is coupled to the first endplate and the second endplate. The filter media is structured to separate a dispersed phase from a continuous phase of the mixture. The filter element further comprises a collection sump that is located below the first and second endplate and structured to receive the dispersed phase. The filter element further comprises a retention barrier disposed above the collection sump. The retention barrier comprises a drain opening structured to discharge the dispersed phase through the retention barrier into the collection sump.
Abstract:
This disclosure generally relates to perforated filter media and coalescing filter elements utilizing perforated filter media. One example coalescing filter element is structured to separate a dispersed phase from a continuous phase of a mixture. The filter media includes a first coalescing layer. The first coalescing layer includes a first filter media. The first filter media has a plurality of pores and a first perforation. Each of the plurality of pores is smaller than the first perforation. The first perforation is formed in the first filter media and extends through the first filter media. The plurality of pores are structured to capture a portion of the dispersed phase. The first perforation is structured to facilitate the transmission of coalesced drops of the dispersed phase through the first coalescing layer such that the coalesced drops of the dispersed phase are separated from the portion of the dispersed phase captured in the first coalescing layer.
Abstract:
A filter media comprises a first fiber layer and a second fiber layer positioned downstream of the first fiber layer. The first fiber layer has a first geometric mean fiber diameter of less than 1 pm such that the geometric standard deviation of fiber diameter is greater than 2. The second fiber layer has a second geometric mean fiber diameter of less than 1 pm such that the geometric standard deviation of fiber diameter is less than 2.
Abstract:
Composite filter media is formed from multiple layers of media material including a nanofiber media layer, where the layers are laminated, bound, or otherwise composited to each other. The composite filter media can comprise at least one nanofiber layer comprising polymeric media material having a geometric mean fiber diameter of about 100 nm to 1 μm, and fibers configured in a gradient such that ratio of the geometric mean diameter of fibers at the upstream face of the nanofiber layer to the geometric mean diameter of fibers at the downstream face of the nanofiber layer is about 1.1 to 2.8, preferably about 1.2 to 2.4.
Abstract:
This disclosure describes a filtration system and method for removing soap from diesel fuel. The removal involves passing fuel through the filtration system. By removing soap, injector sticking and plugging can be reduced and for fuel already contaminated with soap, lubricity and/or corrosion inhibition functionality resulting from the conversion of carboxylic acid additives can be restored to metal carboxylates.
Abstract:
This disclosure generally relates to perforated filter media and coalescing filter elements utilizing perforated filter media. One example coalescing filter element is structured to separate a dispersed phase from a continuous phase of a mixture. The filter media includes a first coalescing layer. The first coalescing layer includes a first filter media. The first filter media has a plurality of pores and a first perforation. Each of the plurality of pores is smaller than the first perforation. The first perforation is formed in the first filter media and extends through the first filter media. The plurality of pores are structured to capture a portion of the dispersed phase. The first perforation is structured to facilitate the transmission of coalesced drops of the dispersed phase through the first coalescing layer such that the coalesced drops of the dispersed phase are separated from the portion of the dispersed phase captured in the first coalescing layer.